Skip to main content
Log in

Pulsed laser-induced liquid jet for skull base tumor removal with vascular preservation through the transsphenoidal approach: a clinical investigation

  • Clinical Article
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

The transsphenoidal approach has recently been used to treat complex lesions beyond the sella turcica, but the difficulties of dealing with small vessels, deep and narrow space, and working angle may limit the procedures. To overcome these problems, we have developed a pulsed laser-induced liquid jet (LILJ) system to dissect tumor tissue with preservation of fine blood vessels within deep and narrow working spaces and evaluated its utility and safety.

Methods

The LILJ system was applied to 14 consecutive patients with uncharacteristically complex skull base tumor treated through the extended transsphenoidal approach. This system consists of a bayonet-shaped catheter incorporating a jet generator formed of stainless tube (external diameter 1.10 mm, internal diameter 0.78 mm), which was surrounded by a coaxial polytetrafluoroethylene 14-G equivalent suction tube to be able to incorporate into the confined working spaces. Minor modifications could be fitted for the catheter (15 to 18 cm length, straight or side flexion tip), and total weight was around 7 g.

Findings

Precise dissection and mass reduction of the tumor were obtained in all cases except one recurrent case of chordoma with significant fibrosis due to radiation. Both small arteries and veins were preserved, allowing subsequent microsurgical devascularization. Intraoperative blood loss was minimal, and tumor removal rate was satisfactory after the introduction of the system. No complication was related to use of the LILJ system.

Conclusion

Although comparison between conventional surgical instruments is mandatory in the future, the present study suggests that the LILJ system can achieve safe and optimum removal of complex skull base tumor. Potential application for minimally invasive endoscopic system, as well as potentials for changing the design of the catheter in according to preference of surgeon with low cost, may give advantages over conventional surgical instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aroussi AA, Sami IM, Lequerrier A, Verhoye JP (2006) The blower: a useful tool to complete thrombectomy of the mechanical prosthetic valve. Ann Thorac Surg 81:1911–1912

    Article  PubMed  Google Scholar 

  2. Black PM, Zervas NT, Candia GL (1987) Incidence and management of complications of transsphenoidal operation for pituitary adenomas. Neurosurgery 20:920–924

    Article  PubMed  CAS  Google Scholar 

  3. Barzaghi LR, Losa M, Giovanelli M, Mortini P (2007) Complications of transsphenoidal surgery in patients with pituitary adenoma: experience at a single centre. Acta Neurochir Wien 149:877–886

    Article  PubMed  CAS  Google Scholar 

  4. Cappabianca P, Briganti F, Cavallo LM, de Divitiis E (2001) Pseudoaneurysm of the intracavernous carotid artery following endoscopic endonasal transsphenoidal surgery, treated by endovascular approach. Acta Neurochir Wien 143:95–96

    Article  PubMed  CAS  Google Scholar 

  5. Cappabianca P, Cavallo LM, Colao A, de Divitiis E (2002) Surgical complications associated with the endoscopic endonasal transsphenoidal approach for pituitary adenomas. J Neurosurg 97:293–298

    Article  PubMed  Google Scholar 

  6. Ciric I, Ragin A, Baumgartner C, Pierce D (1997) Complications of transsphenoidal surgery: results of a national survey, review of the literature, and personal experience. Neurosurgery 40:225–237

    Article  PubMed  CAS  Google Scholar 

  7. Couldwell WT, Weiss MH, Rabb C, Liu JK, Apfelbaum RI, Fukushima T (2004) Variations on the standard transsphenoidal approach to the sellar region, with emphasis on the extended approaches and parasellar approaches: surgical experience in 105 cases. Neurosurgery 55:539–550

    Article  PubMed  Google Scholar 

  8. de Divitiis E, Cappabianca P, Cavallo LM (2002) Endoscopic transsphenoidal approach: adaptability of the procedure to different sellar lesions. Neurosurgery 51:699–707

    Article  PubMed  Google Scholar 

  9. Dusick JR, Esposito F, Kelly DF, Cohan P, DeSalles A, Becker DP, Martin NA (2005) Extended direct endonasal transsphenoidal approach for nonadenomatous suprasellar tumors. J Neurosurg 102:832–841

    Article  PubMed  Google Scholar 

  10. Dusick JR, Esposito F, Malkasian D, Kelly DF (2007) Avoidance of carotid artery injuries in transsphenoidal surgery with the Doppler probe and micro-hook blades. Neurosurgery 60(4 Suppl 2):322–329

    PubMed  Google Scholar 

  11. Goel A, Deogaonkar M, Desai K (1995) Fatal postoperative pituitary apoplexy: its cause and management. Br J Neurosurg 9:37–40

    Article  PubMed  CAS  Google Scholar 

  12. Hirano T, Komatsu M, Saeki T, Uenohara H, Takahashi A, Takayama K, Yoshimoto T (2001) Enhancement of fibrinolytics with a laser-induced liquid jet. Lasers Surg Med 29:360–368

    Article  PubMed  CAS  Google Scholar 

  13. Hirano T, Nakagawa A, Uenohara H, Ohyama H, Jokura H, Takayama K, Shirane R (2003) Pulsed liquid jet dissector using holmium: YAG laser—a novel neurosurgical device for brain incision without impairing vessels. Acta Neurochir Wien 145:401–406

    PubMed  CAS  Google Scholar 

  14. Hirano T, Uenohara H, Komatsu M, Nakagawa A, Satoh M, Ohyama H, Takayama K, Yoshimoto T (2003) Holmium: YAG laser-induced liquid jet dissector: a novel prototype device for dissecting organs without impairing vessels. Minim Invasive Neurosurg 46:121–125

    Article  PubMed  CAS  Google Scholar 

  15. Huttner HB, Steiner T, Hartmann M, Kohrmann M, Juettler E, Mueller S, Wikner J, Metdig-Lamade U, Schramm P, Schwab S, Schellinger PD (2006) Comparison of ABC/2 estimation technique to computer-assisted planimetric analysis in warfarin-related intracerebral parenchymal hemorrhage. Stroke 37:404–408

    Article  PubMed  Google Scholar 

  16. Izumi R, Yabushita K, Shimizu K, Yagi M, Yamaguchi A, Konishi K, Nakagawa T, Miyazaki I (1993) Hepatic resection using a water jet dissector. Surg Today 23:31–35

    Article  PubMed  CAS  Google Scholar 

  17. Jansen ED, van Leeuwen TG, Motamedi M, Borst C, Welch AJ (1994) Temperature dependence of the absorption coefficient of water for midinfrared laser radiation. Lasers Surg Med 14:258–268

    Article  PubMed  CAS  Google Scholar 

  18. Kadyrov NA, Friedman JA, Nichols DA, Cohen-Gadol AA, Link MJ, Piepgras DG (2002) Endovascular treatment of an internal carotid artery pseudoaneurysm following transsphenoidal surgery. Case report. J Neurosurg 96:624–627

    Article  PubMed  Google Scholar 

  19. Kaptain GJ, Vincent DA, Sheehan JP, Laws ER Jr (2001) Transsphenoidal approaches for the extracapsular resection of midline suprasellar and anterior cranial base lesions. Neurosurgery 49:94–101

    Article  PubMed  CAS  Google Scholar 

  20. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL (2005) Expanded endonasal approach: the rostrocaudal axis. Part I. Crista galli to the sella turcica. Neurosurg Focus 19(1):E3

    PubMed  Google Scholar 

  21. Kassam A, Snyderman CH, Mintz A, Gardner P, Carrau RL (2005) Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus 19(1):E4

    PubMed  Google Scholar 

  22. Kassam AB, Gardner P, Snyderman C, Mintz A, Carrau R (2005) Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurg Focus 19(1):E6

    PubMed  Google Scholar 

  23. Kassam AB, Snyderman C, Gardner P, Carrau R, Spiro R (2005) The expanded endonasal approach: a fully endoscopic transnasal approach and resection of the odontoid process: technical case report. Neurosurgery 57(1 Suppl):E213

    Article  PubMed  Google Scholar 

  24. Kitano M, Taneda M (2001) Extended transsphenoidal approach with submucosal posterior ethmoidectomy for parasellar tumors. Technical note. J Neurosurg 94:999–1004

    Article  PubMed  CAS  Google Scholar 

  25. Kocer N, Kizilkilic O, Albayram S, Adaletli I, Kantarci F, Islak C (2002) Treatment of iatrogenic internal carotid artery laceration and carotid cavernous fistula with endovascular stent-graft placement. AJNR Am J Neuroradiol 23:442–446

    PubMed  Google Scholar 

  26. Konishi T, Moritake K, Takebe Y, Suwa H, Handa H (1984) Experimental study on the effect of ultrasonic surgical aspiration on blood flow and nerve function by use of ultrasonic Doppler flowmeter and auditory brainstem evoked response. No Shinkei Geka 12:1069–1075

    PubMed  CAS  Google Scholar 

  27. Kothari RU, Brott T, Broderick J, Barsan WG, Sauerbeck LR, Zuccarello M, Khoury J (1996) The ABCs of measuring intracerebral hemorrhage volumes. Stroke 27:1304–1305

    PubMed  CAS  Google Scholar 

  28. Kroh M, Hall R, Udomsawaengsup S, Smith A, Yerian L, Chand B (2008) Endoscopic water jets used to ablate Barrett's esophagus: preliminary results of a new technique. Surg Endosc 22:2498–2502

    Article  PubMed  CAS  Google Scholar 

  29. Kurschel S, Leber KA, Scarpatetti M, Roll P (2005) Rare fatal vascular complication of transsphenoidal surgery. Acta Neurochir Wien 147:321–325

    Article  PubMed  CAS  Google Scholar 

  30. Laws ER Jr, Kern EB (1976) Complications of trans-sphenoidal surgery. Clin Neurosurg 23:401–416

    PubMed  Google Scholar 

  31. Laws ER Jr (1999) Vascular complications of transsphenoidal surgery. Pituitary 2:163–170

    Article  PubMed  Google Scholar 

  32. Matsumi N, Matsumoto K, Mishima N, Moriyama E, Furuta T, Nishimoto A, Taguchi K (1994) Thermal damage threshold of brain tissue—histological study of heated normal monkey brains. Neurol Med Chir (Tokyo) 34:209–215

    Article  CAS  Google Scholar 

  33. Miller JM, Palanker DV, Vankov A, Marmor MF, Blumenkranz MS (2003) Precision and safety of the pulsed electron avalanche knife in vitreoretinal surgery. Arch Ophthalmol 121:871–877

    Article  PubMed  Google Scholar 

  34. Mortini P, Losa M, Barzaghi R, Boari N, Giovanelli M (2005) Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery 56:1222–1233

    Article  PubMed  Google Scholar 

  35. Nakagawa A, Hirano T, Komatsu M, Sato M, Uenohara H, Ohyama H, Kusaka Y, Shirane R, Takayama K, Yoshimoto T (2002) Holmium: YAG laser-induced liquid jet knife: possible novel method for dissection. Lasers Surg Med 31:129–135

    Article  PubMed  Google Scholar 

  36. Nakagawa A, Kusaka Y, Hirano T, Saito T, Shirane R, Takayama K, Yoshimoto T (2003) Application of shock waves as a treatment modality in the vicinity of the brain and skull. J Neurosurg 99:156–162

    Article  PubMed  Google Scholar 

  37. Nakagawa A, Hirano T, Jokura H, Uenohara H, Ohki T, Hashimoto T, Menezes V, Sato Y, Kusaka Y, Ohyama H, Saito T, Takayama K, Shirane R, Tominaga T (2004) Pulsed holmium: yttrium-aluminum-garnet laser-induced liquid jet as a novel dissection device in neuroendoscopic surgery. J Neurosurg 101:145–150

    Article  PubMed  Google Scholar 

  38. Nakagawa A, Kumabe T, Kanamori M, Saito R, Hirano T, Takayama K, Tominaga T (2008) Clinical application of pulsed laser-induced liquid jet: preliminary report in glioma surgery. No Shinkei Geka 36:1005–1010

    PubMed  Google Scholar 

  39. Oertel J, Gaab MR, Knapp A, Essig H, Warzok R, Piek J (2003) Water jet dissection in neurosurgery: experimental results in the porcine cadaveric brain. Neurosurgery 52:153–159

    Article  PubMed  Google Scholar 

  40. Oertel J, Gaab MR, Warzok R, Piek J (2003) Waterjet dissection in the brain: review of the experimental and clinical data with special reference to meningioma surgery. Neurosurg Rev 26:168–174

    PubMed  Google Scholar 

  41. Oertel J, Gaab MR, Pillich DT, Schroeder HW, Warzok R, Piek J (2004) Comparison of waterjet dissection and ultrasonic aspiration: an in vivo study in the rabbit brain. J Neurosurg 100:498–504

    Article  PubMed  Google Scholar 

  42. Oertel J, Gen M, Krauss JK, Zumkeller M, Gaab MR (2006) The use of waterjet dissection in endoscopic neurosurgery. Technical note. J Neurosurg 105:928–931

    Article  PubMed  Google Scholar 

  43. Ohki T, Nakagawa A, Hirano T, Hashimoto T, Menezes V, Jokura H, Uenohara H, Sato Y, Kusaka Y, Ohyama H, Saito T, Takayama K, Shirane R, Tominaga T (2004) Experimental application of pulsed Ho: YAG laser-induced liquid jet as a novel rigid neuroendoscopic dissection device. Lasers Surg Med 34:227–234

    Article  PubMed  Google Scholar 

  44. Oskouian RJ, Kelly DF, Laws ER Jr (2006) Vascular injury and transsphenoidal surgery. Front Horm Res 34:256–278

    Article  PubMed  Google Scholar 

  45. Papachristou DN, Barters R (1982) Resection of the liver with a water jet. Br J Surg 69:93–94

    Article  PubMed  CAS  Google Scholar 

  46. Rau HG, Duessel AP, Wurzbacher S (2008) The use of water-jet dissection in open and laparoscopic liver resection. HPB Oxf 10:275–280

    Article  CAS  Google Scholar 

  47. Raymond J, Hardy J, Czepko R, Roy D (1997) Arterial injuries in transsphenoidal surgery for pituitary adenoma, the role of angiography and endovascular treatment. AJNR Am J Neuroradiol 18:655–665

    PubMed  CAS  Google Scholar 

  48. Rhoton AL Jr (2002) The sellar region. Neurosurgery 51(4 Suppl):S335–S374

    PubMed  Google Scholar 

  49. Sato Y, Nakagawa A, Hirano T, Ohki H, Uenohara H, Takayama K, Tominaga T (2007) Pulsed laser-induced liquid jet microcatheter system for rapid and reliable fibrinolysis in acute cerebral embolisms: experiments on safety and preliminary application in porcine cranial vessels. Minim Invas Neurosurg 50:212–218

    Article  CAS  Google Scholar 

  50. Terzis AJ, Nowak G, Rentzsch O, Arnold H, Diebold J, Baretton G (1989) A new system for cutting brain tissue preserving vessels: water jet cutting. Br J Neurosurg 3:361–366

    Article  PubMed  CAS  Google Scholar 

  51. Tominaga T, Nakagawa A, Hirano T, Sato J, Kato K, Hosseini SHR, Takayama K (2006) Application of underwater shock wave and laser-induced liquid jet to neurosurgery. Shock Waves 15:55–67

    Article  Google Scholar 

  52. Tschan C, Gaab MR, Krauss JK, Oertel J (2009) Waterjet dissection of the vestibulocochlear nerve: an experimental study. J Neurosurg 110:656–661

    Article  PubMed  Google Scholar 

  53. Turner HE, Harris AL, Melmed S, Wass JAH (2003) Angiogenesis in endocrine tumors. Endocr Rev 24:600–632

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported in part by a Grant-in-Aid for Scientific Research (B) (No. 18390388 and No. 19390372), a Grant-in-Aid for Young Scientists (A) (No. 19689028 and 22689039), and Challenging Exploratory Research (Nos. 21659313 and 21659334) from the Japanese Ministry of Education, Culture, Sports, Science, and Technology, the Japanese Foundation for Research and Promotion of Endoscopy Grant, the Tohoku University Exploratory Research Program for Young Scientists (ERYs), the Collaborative Research Project of the Institute of Fluid Science, Tohoku University, and Ogino Research Facilitating award from Japanese Society of Biomedical Engineering.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshikazu Ogawa.

Additional information

Comments

The authors describe their experience with the pulsed laser-induced liquid jet (LILJ) system in 14 patients with sellar/parasellar lesions removed via the extended transsphenoidal approach. This is a very interesting device that merits further study. This technology may be an advantage for removing tumour lateral to the carotid from the transsphenoidal approach, as those with cavernous sinus invasion. It may be optimally adjusted to be able to remove tumour while avoiding injury to the carotid or adjacent cranial nerves. This reviewer does note that the operative time was very long in some cases (over 10 h in one case). This seems excessive for an extended transsphenoidal surgery, in which the approach time is very short. One would question whether the actual removal of tumour is slow with this technique when compared with conventional instrument tumour removal.

W.T. Couldwell

Utah, USA

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogawa, Y., Nakagawa, A., Takayama, K. et al. Pulsed laser-induced liquid jet for skull base tumor removal with vascular preservation through the transsphenoidal approach: a clinical investigation. Acta Neurochir 153, 823–830 (2011). https://doi.org/10.1007/s00701-010-0925-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-010-0925-x

Keywords

Navigation