Skip to main content

Advertisement

Log in

Role of ERK1/2 and vascular cell proliferation in cerebral vasospasm after experimental subarachnoid hemorrhage

  • Experimental Research
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Background

Although there are still some unresolved aspects, current research has revealed that vascular cell proliferation probably plays an important part in the pathological formation process of cerebral vasospasm. Using a “two-hemorrhage” model of subarachnoid hemorrhage (SAH), this study investigated the function of ERK1/2 and vascular wall cell proliferation in pathological development of cerebral vasospasm.

Methods

Fifty rabbits were randomly divided into five groups: (1) SAH day 1, (2) SAH day 3, (3) SAH day 7, (4) SAH + DMSO (dimethyl sufoxide) solution, (5) SAH + PD98059 (a mitogen-activated protein kinase inhibitor) dissolved in DMSO solution. In the SAH + PD98059/DMSO group and SAH + DMSO control group, PD98059 in DMSO (2 mmol/l) or an equal quantity of DMSO, respectively, was injected into the cisterna magna, once a day from SAH day 1 to day 3. Western protein blotting was used to detect the expression of proliferating cell nuclear antigen (PCNA) and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in each group’s basilar arteries. Light microscopy and electron microscopy were used for dynamic histological detection at each observation point of the SAH vascular wall under the effects of SAH and the mitogen-activated protein kinase inhibitor. Another 18 rabbits were randomly divided into three groups: SAH, SAH + DMSO and SAH + PD98059/DMSO; cerebral angiograpathy was conducted on SAH days 1 and 7, and the progression of angiographic vasospasm evaluated.

Results

Compared with the control group, the extent of vasospasm after SAH increased with time. PD98059 significantly reduced angiographic and morphological vasospasm. In cerebral vasospasm, the expression of T-ERK1/2 showed no significant change. However, expression of p-ERK1/2 and PCNA began to increase significantly on day 3, and achieved a peak on day 7. PD98059 significantly inhibited the expression of p-ERK1/2 and PCNA (p < 0.05).

Conclusions

Cell proliferation on the vascular wall plays an important part in the pathological formation process of cerebral vasospasm. ERK1/2 phosphorylation, as an important signaling pathway, taking part in the process of vascular-wall pathological proliferation of cerebral vasospasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aoki K, Zubkov AY, Tibbs RE, Zhang JH (2002) Role of MAPK in chronic cerebral vasospasm. Life Sci 70:1901–1908. doi:10.1016/S0024-3205(02)01499-6

    Article  PubMed  CAS  Google Scholar 

  2. Apenberg S, Freyberg MA, Friedl P (2003) Shear stress induces apoptosis in vascular smooth muscle cells via an autocrine Fas/Fa, sL pathway. Biochem Biophys Res Commun 310:355–359. doi:10.1016/j.bbrc.2003.09.025

    Article  PubMed  CAS  Google Scholar 

  3. Bhatt RR, Ferrell JE Jr (1999) The protein kinase p90 rsk as an essential mediator of cytostatic factor activity. Science 286:1309–1310. doi:10.1126/science.286.5443.1362

    Google Scholar 

  4. Borel CO, Mckee A, Parra A, Haglund MM, Solan A, Prabhakar V, Sheng H, Warner DS, Niklason L (2003) Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke 34:427–431. doi:10.1161/01.STR.0000053848.06436.AB

    Article  PubMed  CAS  Google Scholar 

  5. Chen D, Nishizawa S, Yokota N, Ohta S, Yokoyama T, Namba H (2002) High-dose methylprednisolone prevents vasospasm after subarachnoid hemorrage through inhibition of protein kinase C activation. Neurol Res 24:215–222. doi:10.1179/016164102101199639

    Article  PubMed  CAS  Google Scholar 

  6. Faraci FM, Heistad DD (1998) Regulation of the cerebral circulation: role of endothelium and potassium channels. Physiol Rev 78:53–97

    PubMed  CAS  Google Scholar 

  7. Harrod CG, Bendok BR, Batler HH (2005) Prediction of cerebral vasospasm in patients presenting with aneurymal subarachnoid hemorrhage: a review. Neurosurg 4:633–654. doi:10.1227/01.NEU.0000156644.45384.92

    Google Scholar 

  8. Inoue T, Shimizu H, Kaminuma T, Tajima M, Watabe K, Yoshimoto T (1996) Prevention of cerebral vasospasm by calcitonin gene-related peptide slow-release tablet after subarachnoid hemorrhage in monkeys. Neurosurgery 39:984–990. doi:10.1097/00006123-199611000-00020

    Google Scholar 

  9. Juvela S (2000) Plasma endothelin concentrations after aneurismal subarachnoid hemorrhage. J Neurosurg 92:390–400

    Article  PubMed  CAS  Google Scholar 

  10. Koide M, Nishizawa S, Ohta S, Yokoyama T, Namba H (2002) Chronological changes of the contractile mechanism in prolonged vasospasm after subarachnoid hemorrhage: from protein kinase C to protein tyrosine kinase. Neurosurgery 51:1468–1474; discussion 1474–1476. doi:10.1097/00006123-200212000-00018

    Article  PubMed  Google Scholar 

  11. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after SAH. J Cereb Blood Flow Metab 24:916–925. doi:10.1097/01.WCB.0000125886.48838.7E

    Article  PubMed  CAS  Google Scholar 

  12. Kusaka G, Kimura H, Kusaka I, Perkins E, Nanda A, Zhang JH (2003) Contribution of Src tyrosine kinase to cerebral vasospasm after subarachnoid hemorrhage. J Neurosurg 99:383–390

    Article  PubMed  CAS  Google Scholar 

  13. Miller CA, Lombard FW, Wu CT, Hubbard CJ, Silbajoris L, Borel C, Niklason LE (2006) Role of vascular mitogens in subarachnoid hemorrhage-associated cerebral vasculopathy. Neurocrit Care 05:215–221. doi:10.1385/NCC:5:3:215

    Article  Google Scholar 

  14. Nishizawa S, Chen D, Yokoyama T, Yokota N, Otha S (2000) Endothelin-1 initiates the development of vasospasm after subarachnoid haemorrhage through protein kinase C activation, but does not contribute to prolonged vasospasm. Acta Neurochir (Wien) 142:1409–1415. doi:10.1007/s007010070013

    Article  CAS  Google Scholar 

  15. Nishizawa S, Laher I (2005) Signaling mechanism in cerebral vasospasm. Trends Cardiovasc Med 15:24–34. doi:10.1016/j.tcm.2004.12.002

    Article  PubMed  CAS  Google Scholar 

  16. Nishizawa S, Peterson JW, Shimoyama I, Iwasaki K, Uemura K (1993) Therapeutic effect of anew immunosuppressant, FK-506, on vasospasm after subarachnoid hemorrhage. Neurosurgery 32:986–992. doi:10.1097/00006123-199306000-00018

    Article  PubMed  CAS  Google Scholar 

  17. Nishizawa S, Zhang JH (2008) Basic research and treatment for cerebral vasospasm after subarachnoid hemorrhage: the present and future prospects. No Shinkei Geka 36:121–134

    PubMed  CAS  Google Scholar 

  18. Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13. doi:10.1016/S0898-6568(99)00071-6

    Google Scholar 

  19. Pluta RM, Zauner A, Morgan JK, Muraszko KM, Oldfield EH (1992) Is vasospasm related to proliferative arteriopathy? Neurosurg 77:740–748

    Article  CAS  Google Scholar 

  20. Rothoerl RD, Ringel F (2007) Molecular mechanisms of cerebral vasospasm following aneurysmal SAH. Neurol Res 29:636–642. doi:10.1179/016164107X240224

    Article  PubMed  CAS  Google Scholar 

  21. Tada T Reidy MA (1987) Endothelial regeneration. IX. Arterial injury followed by rapid endothelial repair induces smooth-muscle-cell proliferation but not intimal thickening. Am J Pathol 29:429-433

    Google Scholar 

  22. Talmor D, Applebaum A, Rudich A, Shapira Y, Tirosh A (2000) Activation of mitogen-activated protein kinases in human heart during cardiopulmonary bypass. Circ Res 86:1004–1007. J.

    Google Scholar 

  23. Tibbs R, Zubkov A, Aoki K, Muguro T, Badr A, Parent A, Zhang JH (2000) Effects of mitogen-activated protein kinase inhibitors on cerebral vasospasm in a double-hemorrhage model in dogs. J Neurosurg 93:1041–1047

    Article  PubMed  CAS  Google Scholar 

  24. Wang W, Prince CZ, Hu X, Pollman MJ (2003) HRT1 modulates vascular smooth muscle cell proliferation and apoptosis. Biochem Biophys Res Commun 308:596–601. doi:10.1016/S0006-291X(03)01453-0

    Article  PubMed  CAS  Google Scholar 

  25. Welch K (1963) Secretion of cerebrospinal fluid by choroid plexus of the rabbit. Am J Physiol 205:617–624

    PubMed  CAS  Google Scholar 

  26. Zhang JH (2006) Editorial: experimental subarachnoid hemorrhage second issue: cerebral vasospasm. Neurol Res 28:687–689. doi:10.1179/016164106X154438

    Article  PubMed  Google Scholar 

  27. Zhang B, Fugleholm K, Day LB, Ye S, Weller RO, Day IN (2003) Molecular pathogenesis of subarachnoid haemorrhage. Int J Biochem Cell Biol 35:1341–1360

    Article  PubMed  CAS  Google Scholar 

  28. Zhang ZD, Macdonald RL (2006) Contribution of the remodeling response to cerebral vasospasm. Neurol Res 28:713–720. doi:10.1179/016164106X151990

    Article  PubMed  Google Scholar 

  29. Zubkov AY, Nanda A, Zhang JH (2003) Signal transduction pathways in cerebral vasospasm. Pathophysiology 9:47–61. doi:10.1016/S0928-4680(02)00055-X

    Article  PubMed  CAS  Google Scholar 

  30. Zubkov A, Ogihara K, Tumu P, Patlolla A, Lewis AI, Parent AD, Zhang JH (1999) Mitogen-activated protein kinase mediation of hemolysate-induced contraction in rabbit basilar artery. J Neurosurg 90:1091–1097

    Article  PubMed  CAS  Google Scholar 

  31. Zhou ML, Shi JX, Zhu JQ, Hang CH, Mao L, Chen KF, Yin HX (2007) Comparison between one-and two-hemorrhage models of cerebral vasospasm in rabbits. J Neurosci Methods 159:318–324. doi:10.1016/j.jneumeth.2006.07.026

    Article  PubMed  Google Scholar 

  32. Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH (2004) Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:419–431. doi:10.1097/00004647-200404000-00007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The research has been supported by an Overseas Returning Persons’ Initial Capital Grant from the Ministry of Education of the People’s Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Chen, JJ., Yin, Q. et al. Role of ERK1/2 and vascular cell proliferation in cerebral vasospasm after experimental subarachnoid hemorrhage. Acta Neurochir 151, 1127–1134 (2009). https://doi.org/10.1007/s00701-009-0385-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-009-0385-3

Keywords

Navigation