Skip to main content
Log in

Parallel least-squares finite element method for time-dependent convection–diffusion system

  • Published:
Computing Aims and scope Submit manuscript

Abstract

On the basis of overlapping domain decomposition, we construct a parallel least-square finite element algorithm (PLS) for solving the first-order time-dependent convection–diffusion system. The algorithm is fully parallel. At each time step, only one or two iterations are needed to reach to given accuracy. Some numerical results are reported to confirm the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochev PB, Gunzburger MD (1995) Least-squares method for the velocity–pressure–stress formulation of the Stokes equations. Comput Methods Appl Mech Eng 126: 267–287

    Article  MathSciNet  MATH  Google Scholar 

  2. Cai Z, Lazarov R, Manteuffel TA, McCormick SF (1994) First-order least squares for second-order partial differential equations: Part I. SIAM J Numer Anal 31: 1785–1799

    Article  MathSciNet  MATH  Google Scholar 

  3. Carey GF, Pehlivanov AI, Vassilevski PS (1995) Least-squares mixed finite element method for non-selfadjoint elliptic problem. SIAM J Scientific Comput 16: 1126–1136

    Article  MathSciNet  MATH  Google Scholar 

  4. Chang CL (1987) A finite element method for first order elliptic system in three dimension. Appl Math Comput 23: 171–183

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang CL (1990) A least-squares finite element method for the Helmholtz equation. Comput Methods Appl Mech Eng 83: 1–7

    Article  MATH  Google Scholar 

  6. Chang CL, Gunzburger MD (1990) A subdomain-Galerkin/least square method for first order elliptic system in the plane. SIAM J Numer Anal 27: 1197–1211

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang CL (1994) An error estimate of the least squares finite element method for Stokes problem in three dimension. Math Comput 207: 41–50

    Google Scholar 

  8. Chang CL, Yang SY, Hsu CH (1995) A least-squares finite element method for incompressible flow in stress–velocity–pressure version. Comput Methods Appl Mech Eng 128: 1–9

    Article  MathSciNet  MATH  Google Scholar 

  9. Jiang BN, Chang CL (1990) Least squares finite element for the Stokes problem. Comput Methods Appl Mech Eng 78: 297–311

    Article  MathSciNet  MATH  Google Scholar 

  10. Jiang BN, Povinelli LA (1990) Optimal least squares finite element method for elliptic problems. Comput Methods Appl Mech Eng 102: 199–212

    Article  MathSciNet  Google Scholar 

  11. Pehlivanov AI, Carey GF, Lazarov RD (1994) Least-squares mixed finite elements for second order elliptic problems. SIAM Numer Anal 31: 1368–1375

    Article  MathSciNet  MATH  Google Scholar 

  12. Pehlivanov AI, Carey GF (1994) Error estimate for least-squares mixed finite elements. RAIRO Model Math Numer Anal 28: 499–516

    MathSciNet  MATH  Google Scholar 

  13. Yu ST, Jiang BN, Liu NS, Wu J (1995) The least-squares finite element method for low-Mach-number compressible viscous flows. Int J Numer Methods Fluids 38: 3591–3610

    MathSciNet  MATH  Google Scholar 

  14. Hsieh PW, Yang SY (2009) On efficient least-squares finite element methods for convection-dominated problems. Comput Methods Appl Mech Eng 199: 183–196

    Article  MathSciNet  Google Scholar 

  15. Majidi M, Starke G (2001) Least-squares Galerkin methods for parabolic problems. I. Semidiscretization in time. SIAM J Numer Anal 39: 1302–1323

    Article  MathSciNet  MATH  Google Scholar 

  16. Majidi M, Starke G (2002) Least-squares Galerkin methods for parabolic problems. II. The fully discrete case and adaptive algorithms. SIAM J Numer Anal 39: 1648–1666

    Article  MathSciNet  MATH  Google Scholar 

  17. Rui H, Kim SD, Kim S (2009) Split least-squares Galerkin finite element methods for linear and nonlinear parabolic problems. J Comput Appl Math 223: 938–952

    Article  MathSciNet  MATH  Google Scholar 

  18. Jiang BN, Povinelli LA (1990) Least-squares finite element method for fluid dynamics. Comput Methods Appl Mech Eng 81: 13–37

    Article  MathSciNet  MATH  Google Scholar 

  19. Tang LQ, Tsang TTH (1993) A least-square finite element method for time-dependent incompressible flows with thermal convection. Int J Numer Methods Fluids 17: 271–289

    Article  MATH  Google Scholar 

  20. Yang DP (1999) Some least-squares Garlerkin procedures for first-order time-dependent convection–diffusion system. Comput Methods Appl Mech Eng 180: 81–95

    Article  MATH  Google Scholar 

  21. Yang DP (2000) Analysis of least-squares mixed finite element methods for nonlinear nonstationay convection–diffusion problems. Math Comput 69: 929–963

    MATH  Google Scholar 

  22. Yang DP (2002) Least-squares mixed finite element methods for non-linear parabolic problems. J Comput Math 20: 153–164

    MathSciNet  MATH  Google Scholar 

  23. Bramble JH, Pasciak JE, Xu J (1990) Parallel multilevel preconditioners. Math Comput 55: 1–22

    Article  MathSciNet  MATH  Google Scholar 

  24. Bramble JH, Pasciak JE, Xu J (1991) Convergence estimates for product iterative methods with application to domain decomposition. Math Comput 57: 1–21

    Article  MathSciNet  MATH  Google Scholar 

  25. Cai XC (1994) Some domain decomposition algorithms for nonselfadjont elliptic and parabolic partial differential equations. SIAM J Sci Comput 15: 587–603

    Article  MathSciNet  MATH  Google Scholar 

  26. Dryja M, Widlund OB (1987) An additive variant of Schwarz alternating methods for many subregions, T ech Report 339 Dept of Comp Sci Coutant Institute

  27. Lu T, Shih TM, Liem CB (1991) Two synchronous parallel algorithms for partial differential equations. J Comput Math 9: 74–85

    MathSciNet  MATH  Google Scholar 

  28. Xu J (2001) The method of subspace corrections. J Comput Appl Math 128: 335–362

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu J (1989) Theory of multilevel methods. PhD thesis, Cornell University

  30. Xu J (1992) Iterative methods by space decomposition and subspace correction: a unifying approach. SIAM Rev 34: 581–613

    Article  MathSciNet  MATH  Google Scholar 

  31. Cai XC (1991) Additive Schwarz algorithms for parabolic convection–diffusion equations. Numer Math 60: 41–61

    Article  MathSciNet  MATH  Google Scholar 

  32. Cai XC (1994) Multiplicative Schwarz methods for parabolic problem. SIAM J Sci Comput 15: 587–603

    Article  MathSciNet  MATH  Google Scholar 

  33. Tai XC (1998) A space decomposition method for parabolic equations. Numer Methods Partial Differ Equ 14: 24–46

    Google Scholar 

  34. Rui H, Yang DP (1998) Schwarz type domain decomposition algorithms for parabolic equations and error estimates. Acta Math Appl Sinica 14: 300–313

    Article  MathSciNet  MATH  Google Scholar 

  35. Rui H, Yang DP (2001) Multiplicative Schwarz algorithm with time stepping along characteristics for convection diffusion equations. J Comput Math 19: 501–510

    MathSciNet  MATH  Google Scholar 

  36. Adams RA (1975) Sobolev spaces. Academic Press, New York

    MATH  Google Scholar 

  37. Toselli A, Widlund O (2005) Domain decomposition methods—algorithms and theory. Springer, Berlin

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansong Zhang.

Additional information

Communicated by X. Chen.

This work was supported by the National Basic Research Program of P. R. China under the grant 2005CB321703 and the Research Fund for Doctoral Program of High Education by China State Education Ministry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Yang, D. Parallel least-squares finite element method for time-dependent convection–diffusion system. Computing 91, 217–240 (2011). https://doi.org/10.1007/s00607-010-0115-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0115-y

Keywords

Mathematics Subject Classification (2000)

Navigation