Skip to main content
Log in

Finite central difference/finite element approximations for parabolic integro-differential equations

  • Published:
Computing Aims and scope Submit manuscript

Abstract

We study the numerical solution of an initial-boundary value problem for parabolic integro-differential equation with a weakly singular kernel. The main purpose of this paper is to construct and analyze stable and high order scheme to efficiently solve the integro-differential equation. The equation is discretized in time by the finite central difference and in space by the finite element method. We prove that the full discretization is unconditionally stable and the numerical solution converges to the exact one with order Ot 2 + h l). A numerical example demonstrates the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin Choi U, Macamy RC (1989) Fractional order Volterra equations. In: Da Prato G, Iannelli M (eds) Volterra integro-differential equations in Banach spaces and applications. Pitman Res Notes Math, vol 190. Longman, Harlow, pp 231–245

    Google Scholar 

  2. Ciarlet PG (1978) The finite element methods for elliptic problems. North-Holland, Amsterdam

    Google Scholar 

  3. Thomée V (1997) Galerkin finite element methods for parabolic problems. Springer, Berlin

    MATH  Google Scholar 

  4. Lin Q, Yan N (1996) Structure and analysis for efficient finite element methods, Publishers of Hebei University (in Chinese)

  5. Brunner H, Yan N (2005) Finite element methods for optimal control problems governed by integral equations and integro-differential equations. Numer Math 101: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  6. Boor C, Swart B (1973) Collocation at Gauss point. SIAM J Numer Anal 10: 582–606

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen C, Thomée V, Wahlbin LB (1992) Finite element approximation of a parabolic integro-differential equation with a weakly singular kernel. Math Comput 58: 587–602

    MATH  Google Scholar 

  8. Adolfsson K, Enelun M, Larsson S (2003) Adaptive discretization of an intergro-differential equation with a weakly singular convolution kernel. Comput Methods Appl Mech Eng 192: 5285–5304

    Article  MATH  Google Scholar 

  9. Yanik EG, Fairweather G (1988) Finite element methods for parabolic and hyperbolic partial integro-differential equations, nonlinear analysis. Theory Methods Appl 12: 785–809

    Article  MATH  MathSciNet  Google Scholar 

  10. Yan Yi, Fairweather G (1992) Orthogonal collocation methods for some partial integro-differential equations. SIAM J Numer Anal 29: 755–768

    Article  MATH  MathSciNet  Google Scholar 

  11. Fairweather G, Meade D (1989) A survey of spline collocation methods for the numerical solution of differential equations. Marcel Dekker, New York, pp 297–341

    Google Scholar 

  12. Fairweather G (1994) Spline collocation methods for a class of hyperbolic partial integro-differential equations. SIAM J Numer Anal 31: 444–460

    Article  MATH  MathSciNet  Google Scholar 

  13. Greenwell-Yanik E, Fairweather G (1986) Analyses of spline collocation methods for parabolic and hyperbolic problems in two space variables. SIAM J Numer Anal 23: 282–296

    Article  MATH  MathSciNet  Google Scholar 

  14. Huang Y-q (1994) Time discretization scheme for an integro-differential equation of parabolic type. J Comput Math 12: 259–263

    MATH  MathSciNet  Google Scholar 

  15. Brenner SC, Scott LR (1994) The mathematical theory of finite element methods. Springer, New York

    MATH  Google Scholar 

  16. Robinson MP, Fairweather G (1994) Orthogonal spline collocation methods for Schrödinger-type equation in one space variable. Numer Math 68: 355–376

    Article  MATH  MathSciNet  Google Scholar 

  17. Tang T (1993) A Finite difference scheme for a partial integro-differential equation with a weakly singular kernel. Appl Numer Math 2: 309–319

    Article  Google Scholar 

  18. Sun Z, Wu X (2006) A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math 2: 193–209

    Article  MathSciNet  Google Scholar 

  19. Lubich Ch, Sloan IH, Thomée V (1996) Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term. Math Comput 65: 1–17

    Article  MATH  Google Scholar 

  20. Lin Y, Xu C (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225: 1533–1552

    Article  MATH  MathSciNet  Google Scholar 

  21. Da X (1993) Non-smooth initial data error estimates with the weight norms for the linear finite element method of parabolic partial differential equations. Appl Math Comput 54: 1–24

    Article  MATH  MathSciNet  Google Scholar 

  22. Da X (1993) On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel. I: Smooth initial data. Appl Math Comput 58: 1–27

    Article  MATH  MathSciNet  Google Scholar 

  23. Da X (1993) On the discretization in time for a parabolic integro-differential equation with a weakly singular kernel. II: Non-smooth initial data. Appl Math Comput 58: 29–60

    Article  MATH  MathSciNet  Google Scholar 

  24. Da X (1993) Finite element methods for the nonlinear integro-differential equations. Appl Math Comput 58: 241–273

    Article  MATH  MathSciNet  Google Scholar 

  25. Da X (1997) The global behaviour of time discretization for an abstract Volterra equation in Hilbert space. CACOLO 34: 71–104

    MATH  Google Scholar 

  26. Da X (1998) The long-time global behaviour of time discretization for fractional order Volterra equation. CACOLO 35: 93–116

    Article  MATH  MathSciNet  Google Scholar 

  27. Mclean W, Thomée V (2004) Time discretization of an evolution equation via Laplace transforms. IAM J Numer Anal 24: 439–463

    Article  MATH  Google Scholar 

  28. Mclean W, Thomée V (1993) Numerical solution of an evolution equation with a positive type memory term. Austral Math Soc Ser 20: 23–70

    Article  Google Scholar 

  29. Mclean W, Thomée V, Wahlbin LB (1996) Discretization with variable time steps of an evolution equation with a positive-type memory term. J Comput Appl Math 69: 49–69

    Article  MATH  MathSciNet  Google Scholar 

  30. Larsson S, Thomée V, Wahlbin LB (1998) Numerical Solution of Parabolic Integro-differential equations by the discontinuous Galerkin methods. Math Comput 67: 45–71

    Article  MATH  Google Scholar 

  31. Chen C (2007) An introduction to scientific computing. http://www.ScienceP.com

  32. Sanz-serna JM (1988) A numerical method for a partial integro-differential equation. SIAM J Numer Anal 25: 319–327

    Article  MATH  MathSciNet  Google Scholar 

  33. Bialecki B (1998) Convergence analysis of orthogonal spline collocation for elliptic boundary value problems. SIAM J Numer Anal 35: 617–631

    Article  MATH  MathSciNet  Google Scholar 

  34. Bialecki B, Fairweather G (2001) Orthogonal spline collocation methods for partial differential equations. J Comput Appl Math 128: 55–82

    Article  MATH  MathSciNet  Google Scholar 

  35. Zhang S, Lin Y, Rao M, Rao M (2000) Numerical solution for second-kind Volterra integtal equations by Galerkin methods. Appl. Math. 45(1): 19–39

    Article  MATH  MathSciNet  Google Scholar 

  36. Lin T, Lin Y, Rao M, Zhang S (2000) Petrov–Galerkin methods for linear Volterra integro-differential equations. SIAM J Numer Anal 38(3): 937–963

    Article  MATH  MathSciNet  Google Scholar 

  37. Chen C (2001) Structure theory of superconvergence of finite elements. Hunan Science and Technology Press, China

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Da.

Additional information

Communicated by N. Yan.

This work was supported in part by the National Natural Science Foundation of China, contract grant number 10971062.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Da, X. Finite central difference/finite element approximations for parabolic integro-differential equations. Computing 90, 89–111 (2010). https://doi.org/10.1007/s00607-010-0105-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-010-0105-0

Keywords

Mathematics Subject Classification (2000)

Navigation