Skip to main content
Log in

An efficient algebraic multigrid preconditioner for a fast multipole boundary element method

  • Published:
Computing Aims and scope Submit manuscript

Abstract

Fast boundary element methods still need good preconditioning techniques for an almost optimal complexity. An algebraic multigrid method is presented for the single layer potential using the fast multipole method. The coarsening is based on the cluster structure of the fast multipole method. The effort for the construction of the nearfield part of the coarse grid matrices and for an application of the multigrid preconditioner is of the same almost optimal order as the fast multipole method itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bebendorf M (2005). Hierarchical LU decomposition-based preconditioners for BEM. Computing 74(3): 225–247

    Article  MATH  MathSciNet  Google Scholar 

  2. Bebendorf M and Rjasanow S (2003). Adaptive low-rank approximation of collocation matrices. Computing 70(1): 1–24

    Article  MATH  MathSciNet  Google Scholar 

  3. Bramble JH, Leyk Z and Pasciak JE (1994). The analysis of multigrid algorithms for pseudodifferential operators of order minus one. Math Comput 63(208): 461–478

    Article  MATH  MathSciNet  Google Scholar 

  4. Bramble JH, Pasciak JE and Xu J (1990). Parallel multilevel preconditioners. Math Comput 55(191): 1–22

    Article  MATH  MathSciNet  Google Scholar 

  5. Dahmen W, Prößdorf S and Schneider R (1993). Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution. Adv Comput Math 1(3–4): 259–335

    Article  MATH  MathSciNet  Google Scholar 

  6. Funken SA and Stephan EP (1997). The BPX preconditioner for the single layer potential operator. Appl Anal 67(3–4): 327–340

    Article  MATH  MathSciNet  Google Scholar 

  7. Greengard L (1987). The rapid evaluation of potential fields in particle systems. The MIT Press, USA

    Google Scholar 

  8. Greengard L and Rokhlin V (1987). A fast algorithm for particle simulations. J Comput Phys 73: 325–348

    Article  MATH  MathSciNet  Google Scholar 

  9. Hackbusch W (1999). A sparse matrix arithmetic based on \({{\mathcal H}}\) -matrices. I. Introduction to \({{\mathcal H}}\) -matricesComputing 62(2): 89–108

    Article  MATH  MathSciNet  Google Scholar 

  10. Hackbusch W, Löhndorf M and Sauter SA (2006). Coarsening of boundary-element spaces. Computing 77(3): 253–273

    Article  MATH  MathSciNet  Google Scholar 

  11. Hackbusch W and Nowak ZP (1989). On the fast matrix multiplication in the boundary element method by panel clustering. Numer Math 54(4): 463–491

    Article  MATH  MathSciNet  Google Scholar 

  12. Heuer N, Stephan EP and Tran T (1998). Multilevel additive Schwarz method for the h-p version of the Galerkin boundary element method. Math Comput 67(222): 501–518

    Article  MATH  MathSciNet  Google Scholar 

  13. Khoromskij BN and Wendland WL (1993). Spectrally equivalent preconditioners for boundary equations in substructuring techniques. East West J Numer Math 1(1): 1–26

    MATH  MathSciNet  Google Scholar 

  14. Langer U and Pusch D (2005). Data-sparse algebraic multigrid methods for large scale boundary element equations. Appl Numer Math 54(3–4): 406–424

    Article  MATH  MathSciNet  Google Scholar 

  15. Langer U, Pusch D (2007) Convergence analysis of geometrical multigrid methods for solving data-sparse boundary element equations. Comput Vis Sci (published online)

  16. Langer U, Pusch D and Reitzinger S (2003). Efficient preconditioners for boundary element matrices based on grey-box algebraic multigrid methods. Int J Numer Methods Eng 58(13): 1937–1953

    Article  MATH  MathSciNet  Google Scholar 

  17. Maischak M, Stephan EP and Tran T (2000). Multiplicative Schwarz algorithms for the Galerkin boundary element method. SIAM J Numer Anal 38(4): 1243–1268

    Article  MATH  MathSciNet  Google Scholar 

  18. Nishimura N (2002). Fast multipole accelerated boundary integral equation methods. Appl Mech Rev 55(4): 299–324

    Article  Google Scholar 

  19. Of G, Steinbach O and Wendland WL (2005). Applications of a fast multipole Galerkin boundary element method in linear elastostatics. Comput Vis Sci 8: 201–209

    Article  MathSciNet  Google Scholar 

  20. Of G, Steinbach O and Wendland WL (2006). The fast multipole method for the symmetric boundary integral formulation. IMA J Numer Anal 26: 272–296

    Article  MATH  MathSciNet  Google Scholar 

  21. Perez-Jorda JM and Yang W (1996). A concise redefinition of the solid spherical harmonics and its use in the fast multipole methods. J Chem Phys 104(20): 8003–8006

    Article  Google Scholar 

  22. Stephan E (1992). Multigrid solvers and preconditioners for first kind integral equations. Numer Methods Partial Differ Equations 8(5): 443–450

    Article  MATH  Google Scholar 

  23. Rjasanow S and Steinbach O (2007). The fast solution of boundary integral equations. Mathematical and analytical techniques with applications to engineering. Springer, New York

    Google Scholar 

  24. Samarskij AA, Nikolaev ES (1989) Numerical methods for grid equations. Direct methods, vol I. Iterative methods, vol II. Birkhäuser, Basel

  25. Sauter S, Schwab C (2004) Randelementmethoden. Analyse, Numerik und Implementierung schneller Algorithmen. Teubner, Stuttgart

  26. Schöberl J (1997). NETGEN: an advancing front 2D/3D-mesh generator based on abstract rules. Comput Vis Sci 1(1): 41–52

    Article  MATH  Google Scholar 

  27. Steinbach O (2003). Artificial multilevel boundary element preconditioners. Proc Appl Math Mech 3: 539–542

    Article  MathSciNet  Google Scholar 

  28. Steinbach O (2008). Numerical approximation methods for elliptic boundary value problems. Finite and boundary elements. Springer, New York

    MATH  Google Scholar 

  29. Steinbach O and Wendland WL (1998). The construction of some efficient preconditioners in the boundary element method. Adv Comput Math 9(1–2): 191–216

    Article  MATH  MathSciNet  Google Scholar 

  30. Stephan EP (2000). Multilevel methods for the h-, p- and hp-versions of the boundary element method. J Comput Appl Math 125(1–2): 503–519

    Article  MATH  MathSciNet  Google Scholar 

  31. White CA and Head-Gordon M (1994). Derivation and efficient implementation of the fast multipole method. J Chem Phys 101(8): 6593–6605

    Article  Google Scholar 

  32. Yoshida K, Nishimura N and Kobayashi S (2001). Application of fast multipole Galerkin boundary integral equation method to elastostatic crack problems in 3D. Int J Numer Methods Eng 50(3): 525–547

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Of.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Of, G. An efficient algebraic multigrid preconditioner for a fast multipole boundary element method. Computing 82, 139–155 (2008). https://doi.org/10.1007/s00607-008-0002-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00607-008-0002-y

Keywords

Mathematics Subject Classification (2000)

Navigation