Skip to main content

Advertisement

Log in

Phylogeography, classification and conservation of pink zieria (Zieria veronicea; Rutaceae): influence of changes in climate, geology and sea level in south-eastern Australia

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

We assessed genetic variation in the Australian shrub Zieria veronicea across its current distribution and used environmental niche modelling to predict its distribution at the Last Glacial Maximum (LGM). The species range, from Kangaroo Island in South Australia to northern Tasmania, includes substantial overland and marine disjunctions of up to ~ 500 km. By inferring historical patterns of connectivity and genetic differentiation from DNA sequences and AFLP data, we aimed to provide new insight into the history of the species-rich sclerophyll vegetation in south-eastern Australia. Genetic differentiation of populations was not correlated with the size of geographic disjunctions. The deepest genetic divergence was between populations on Kangaroo Island and the adjacent mainland, separated by a strait only 13 km wide. Populations in western Victoria and Tasmania, separated by the 300 km of Bass Strait, showed the lowest genetic differentiation. This pattern is consistent with dispersal of Z. veronicea into Tasmania, across the Bassian Plain, possibly as recently as the LGM, in line with inferred distribution at that time. Genetic patterns, soil ages and niche models support Quaternary colonisation of the lower Murray Basin, potentially from eastern South Australia. The history of a large (500 km) disjunction between populations in western and eastern Victoria is unclear; historical connectivity of populations through suitable habitats is assumed, but the timing and location of connections are not clear. Genetic data support the current recognition of two subspecies and their treatment as distinct entities under conservation legislation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Bowler et al. (2006)

Similar content being viewed by others

References

  • Armstrong JA (1991) Studies on pollination and systematics in the Australian Rutaceae. PhD thesis, University of New South Wales, Sydney

  • Armstrong JA (2002) The genus Zieria (Rutaceae): a systematic and evolutionary study. Austral Syst Bot 15:277–463

    Article  Google Scholar 

  • AVH (2018) The Australasian Virtual Herbarium, Council of Heads of Australasian Herbaria. http://avh.chah.org.au

  • Barrett RA, Bayly MJ, Duretto MF, Forster PI, Ladiges PY, Cantrill DJ (2015) A chloroplast phylogeny of Zieria (Rutaceae) in Australia and New Caledonia shows widespread incongruence with species-level taxonomy. Austral Syst Bot 27:427–449

    Article  Google Scholar 

  • Barrett RA, Bayly MJ, Duretto MF, Forster PI, Ladiges PY, Cantrill DJ (2018) Phylogenetic analysis of Zieria (Rutaceae) in Australia and New Caledonia based on nuclear ribosomal DNA reveals species polyphyly, divergent paralogues and incongruence with chloroplast DNA. Austral Syst Bot 31:16–47

    Article  Google Scholar 

  • Bayly MJ, Holmes GD, Forster PI, Cantrill DJ, Ladiges PY (2013) Major clades of Australian Rutoideae (Rutaceae) based on rbcL and atpB sequences. PLoS ONE 8:e72493. https://doi.org/10.1371/journal.pone.0072493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bayly MJ, Duretto MF, Holmes GD, Forster PI, Cantrill DC, Ladiges PY (2015) Transfer of the New Caledonian genus Boronella to Boronia (Rutaceae) based on analyses of cpDNA and nrDNA. Austral Syst Bot 28:111–123

    Article  Google Scholar 

  • Boardman R (1986) The history and evolution of South Australia’s forests and woodlands. In: Wallace HR (ed) The ecology of the forests and woodlands of South Australia. Government Printer, Adelaide, pp 16–31

    Google Scholar 

  • Bowler JM (1980) Quaternary chronology and palaeohydrology in the evolution of mallee landscapes. In: Storrier RR, Stannard MM (eds) Aeolian landscapes in the semi-arid zone of southeastern Australia. Riverina Society of Soil Science, Wagga Wagga, pp 17–36

    Google Scholar 

  • Bowler JM, Kotsonis A, Lawrence CR (2006) Environmental evolution of the mallee region, western Murray Basin. Proc Roy Soc Victoria 118:161–210

    Google Scholar 

  • Broadhurst L, Breed M, Lowe A, Bragg J, Catullo R, Coates DJ et al (2017) Genetic diversity and structure of the Australian flora. Divers Distrib 23:41–52

    Article  Google Scholar 

  • Byrne M (2008) Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quatern Sci Rev 27:2576–2585

    Article  Google Scholar 

  • Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MAJ, Cooper S, Donnellan SC, Keogh JS, Leys R, Melville J, Murphy DJ, Porch N, Wyrwoll KH (2008) Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molec Ecol 17:4398–4417

    Article  CAS  Google Scholar 

  • Coates DJ, Byrne M, Moritz C (2018) Genetic diversity and conservation unit: dealing with the species-population continuum in the age of genomics. Front Ecol Evol 6:165

    Article  Google Scholar 

  • Cupper ML (2005) Last glacial to Holocene evolution of semi-arid rangelands in southeastern Australia. Holocene 15:541–553

    Article  Google Scholar 

  • DPIPWE (2012) Zieria veronicea subsp. veronicea. Department of Primary Industries, Parks, Water and Environment, Hobart

    Google Scholar 

  • French PA, Brown GK, Bayly MJ (2016) Incongruent patterns of nuclear and chloroplast variation in Correa (Rutaceae): introgression and biogeography in south-eastern Australia. Pl Syst Evol 302:447–468

    Article  Google Scholar 

  • Galbraith J (1962) Pink Zieria in Gippsland. Vic Nat 79:175

    Google Scholar 

  • George AS, Duretto MF, Forster PI (2013) Zieria. Fl Aust 26:282–336

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hope GS (1978) The late Pleistocene and Holocene vegetational history of Hunter Island, north-western Tasmania. Austral J Bot 26:493–514

    Article  Google Scholar 

  • Hope GS (1994) Quaternary vegetation. In: Hill RS (ed) History of the Australian vegetation: cretaceous to recent. Cambridge University Press, Cambridge, pp 368–389

    Google Scholar 

  • Jackson HD, Steane DA, Potts BM, Vaillancourt RE (1999) Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae). Molec Ecol 8:739–751

    Article  Google Scholar 

  • King RA, Leys R (2014) Molecular evidence for mid-Pleistocene divergence of populations of three freshwater amphipod species (Talitroidea: Chiltoniidae) on Kangaroo Island, South Australia, with a new spring-associated genus and species. Austral J Zool 62:137–156

    Article  Google Scholar 

  • Kotsonis A (1999) Tertiary shorelines of the western Murray Basin: weathering, sedimentology and exploration potential. In: Stewart R (ed) Murray basin mineral sands conference, vol 26. Australian Institute of Geoscientists Bulletin, Mildura, pp 57–63

    Google Scholar 

  • Ladiges PY, Gray AM, Brooker MIH (1981) Pattern of geographic variation, based on seedling morphology, in Eucalyptus ovata Labill. and E. brookerana A.M. Gray and comparisons with some other Eucalyptus species. Austral J Bot 29:593–603

    Article  Google Scholar 

  • Lambeck K, Chappell J (2001) Sea level change through the last glacial cycle. Science 292:679–686

    Article  CAS  PubMed  Google Scholar 

  • Larcombe MJ, McKinnon GE, Vaillancourt RE (2011) Genetic evidence for the origins of range disjunctions in the Australian dry sclerophyll plant Hardenbergia violacea. J Biogeogr 38:125–136

    Article  Google Scholar 

  • Lawrence CR (1966) Cainozoic stratigraphy and structure of the mallee region, Victoria. Proc Roy Soc Victoria 79:517–554

    Google Scholar 

  • Marginson J, Ladiges PY (1988) Geographical variation in Eucalyptus baxteri s.l. and the recognition of a new species, E. arenacea. Austral Syst Bot 1:151–170

    Article  Google Scholar 

  • McIntosh PD, Eberhard R, Slee A, Moss P, Price DM, Donaldson P, Doyle R, Martins J (2012) Late quaternary extraglacial cold-climate deposits in low and mid-altitude Tasmania and their climatic implications. Geomorphology 179:21–39

    Article  Google Scholar 

  • Mee JA, Bernatchez L, Reist JD, Rogers SM, Taylor EB (2015) Identifying designatable units for intraspecific conservation prioritization: a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.). Evol Appl 8:423–441

    Article  PubMed Central  PubMed  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  CAS  PubMed  Google Scholar 

  • Millner ML, Rossetto M, Crisp MD, Weston PH (2012) The impact of multiple biogeographic barriers and hybridization on species-level differentiation. Amer J Bot 99:2045–2057

    Article  Google Scholar 

  • Moritz C (1994) Defining evolutionarily significant units for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254

    Article  PubMed  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson EC (1981) Phytogeography of southern Australia. In: Keast A (ed) Ecological biogeography of Australia. Dr. W. Junk, The Hague, pp 735–757

    Google Scholar 

  • Nevill PG, Bossinger G, Ades PK (2010) Phylogeography of the world’s tallest angiosperm, Eucalyptus regnans: evidence for multiple isolated Quaternary refugia. J Biogeogr 37:179–192

    Article  Google Scholar 

  • Nevill PG, Despres T, Bayly MJ, Bossinger G, Ades PK (2014) Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genet and Genomes 10:1079–1092

    Article  Google Scholar 

  • Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala

    Google Scholar 

  • Palsbøll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–6

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Molec Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips S, Anderson R, Schapire R (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2018) Maxent software for modeling species niches and distributions (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/

  • Radosavljevic A, Anderson RP, Araújo M (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629–643

    Article  Google Scholar 

  • Rambaut A (2002) Sequence alignment editor (version 2.0). Oxford University. http://tree.bio.ed.ac.uk/software/seal/

  • Rambaut A, Drummond AJ (2009) Tracer, version 1.5, MCMC trace analysis package. http://beast.bio.ed.ac.uk/Tracer

  • Rathbone DA, McKinnon GE, Potts BM, Steane DA, Vaillancourt RE (2007) Microsatellite and cpDNA variation in island and mainland populations of a regionally rare eucalypt, Eucalyptus perriniana (Myrtaceae). Austral J Bot 55:513–520

    Article  CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Sgrò CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    Article  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller JT, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Amer J Bot 92:142–166

    Article  CAS  Google Scholar 

  • Shaw J, Lickey E, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Amer J Bot 94:275–288

    Article  CAS  Google Scholar 

  • Shepherd L, McLay T (2011) Two micro-scale protocols for the isolation of DNA from polysaccharide-rich plant tissue. J Pl Res 124:311–314

    Article  CAS  Google Scholar 

  • Simmons MP, Ochoterena H (2000) Gaps as characters in sequence-based phylogenetic analyses. Syst Biol 49:369–381

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Molec Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Thomas I, Enright NJ, Kenyon CE (2001) The Holocene history of mediterranean-type plant communities, Little Desert National Park, Victoria, Australia. Holocene 11:691–697

    Article  Google Scholar 

  • Webb JA (1991) Geological history of Victoria. In: Cochrane GW, Quick GW, Spencer-Jones D (eds) Introducing Victorian geology. Geological Society of Australia (Victorian Division), Melbourne, pp 97–168

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfrand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Williams KJ, Ferrier S, Rosauer D, Yeates D, Manion G, Harwood T, Stein J, Faith DP, Laity T, Whalen A (2010) Harnessing continent-wide biodiversity datasets for prioritising national conservation investment. A report prepared for the Department of Sustainability, Environment, Water, Population and Communities. CSIRO Ecosystem Sciences, Canberra

  • Worth JRP, Jordan GJ, McKinnon GE, Vaillancourt RE (2009) The major Australian cool temperate rainforest tree Nothofagus cunninghamii withstood Pleistocene glacial aridity within multiple regions: evidence from the chloroplast. New Phytol 182:519–532

    Article  CAS  PubMed  Google Scholar 

  • Worth JRP, Jordan GJ, Marthick JR, McKinnon GE, Vaillancourt RE (2010) Chloroplast evidence for geographic stasis of the Australian bird-dispersed shrub Tasmannia lanceolata (Winteraceae). Molec Ecol 19:2949–2963

    Article  CAS  Google Scholar 

  • Worth JRP, Marthick JR, Jordan GJ, Vaillancourt RE (2011) Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials. Ann Bot (Oxford) 108:1247–1256

    Article  CAS  Google Scholar 

  • Worth JRP, Williamson GJ, Sakaguchi S, Nevill PG, Jordan GJ (2014) Environmental niche modelling fails to predict Last Glacial Maximum refugia: niche shifts, microrefugia or incorrect palaeoclimate estimates? Glob Ecol Biogeogr 23:1186–1197

    Article  Google Scholar 

  • Worth JRP, Holland BR, Beeton NJ, Schönfeld B, Rossetto M, Vaillancourt RE, Jordan GJ (2017) Habitat type and dispersal mode underlie the capacity for plant migration across an intermittent seaway. Ann Bot (Oxford) 120:539–549

    Article  CAS  Google Scholar 

  • Wright S, Yong CG, Wichman SR, Dawson JW, Gardner RC (2001) Stepping stones to Hawaii: a trans-equatorial dispersal pathway for Metrosideros (Myrtaceae) inferred from nrDNA (ITS + ETS). J Biogeogr 28:769–774

    Article  Google Scholar 

Download references

Acknowledgements

For assistance with fieldwork or provision of specimens, we thank Ruby Wilson, Todd McLay, Duncan Fraser and Rose Barrett. Plant collecting permits were provided by the former Department of Sustainability and Environment (Victoria), the Department of Primary Industries, Parks, Water and Environment (Tasmania) and the Department for Environment, Water and Natural Resources (South Australia). This work was partly supported by an Early Career Researcher grant to MJB from The University of Melbourne and a David H. Ashton Scholarship to WCN from The University of Melbourne Botany Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Bayly.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Andreas Tribsch.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 54 kb)

Information on electronic supplementary material

Information on electronic supplementary material

Online Resource 1. Geographic coordinates for samples used in the AFLP study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neal, W.C., James, E.A. & Bayly, M.J. Phylogeography, classification and conservation of pink zieria (Zieria veronicea; Rutaceae): influence of changes in climate, geology and sea level in south-eastern Australia. Plant Syst Evol 305, 503–520 (2019). https://doi.org/10.1007/s00606-019-01589-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-019-01589-z

Keywords

Navigation