Skip to main content
Log in

Geographic genetic structure of Iberian columbines (gen. Aquilegia)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Southern European columbines (genus Aquilegia) are involved in active processes of diversification, and the Iberian Peninsula offers a privileged observatory to witness the process. Studies on Iberian columbines have provided significant advances on species diversification, but we still lack a complete perspective of the genetic diversification in the Iberian scenario. This work explores how genetic diversity of the genus Aquilegia is geographically structured across the Iberian Peninsula. We used Bayesian clustering methods, principal coordinates analyses, and NJ phenograms to assess the genetic relationships among 285 individuals from 62 locations and detect the main lineages. Genetic diversity of Iberian columbines consists of five geographically structured lineages, corresponding to different Iberian taxa. Differentiation among lineages shows particularly complex admixture patterns at Northeast and highly homogeneous toward Northwest and Southeast. This geographic genetic structure suggests the existence of incomplete lineage sorting and interspecific hybridization as could be expected in recent processes of diversification under the influence of quaternary postglacial migrations. This scenario is consistent with what is proposed by the most recent studies on European and Iberian columbines, which point to geographic isolation and divergent selection by habitat specialization as the main diversification drivers of the Iberian Aquilegia complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Base map source: ESRI

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcántara JM, Bastida JM, Rey PJ (2010) Linking divergent selection on vegetative traits to environmental variation and phenotypic diversification in the Iberian columbines (Aquilegia). J Evol Biol 23:1218–1233. doi:10.1111/j.1420-9101.2010.01981.x

    Article  PubMed  Google Scholar 

  • Alcántara JM, Jaime R, Bastida JM, Rey PJ (2014) The role of genetic constraints on the diversification of Iberian taxa of the genus Aquilegia (Ranunculaceae). Biol J Linn Soc 111:252–261. doi:10.1111/bij.12215

    Article  Google Scholar 

  • Bastida JM, Alcántara JM, Rey PJ, Vargas P, Herrera CM (2010) Extended phylogeny of Aquilegia: the biogeographical and ecological patterns of two simultaneous but contrasting radiations. Pl Syst Evol 284:171–185. doi:10.1007/s00606-009-0243-z

    Article  Google Scholar 

  • Bastida JM, Rey PJ, Alcántara JM (2014) Plant performance and morpho-functional differentiation in response to edaphic variation in Iberian columbines: cues for range distribution? J Pl Ecol 7:403–412. doi:10.1093/jpe/rtt046

    Article  Google Scholar 

  • Bennett KD, Tzedakis PC, Willis KJ (1991) Quaternary refugia of North European trees. J Biogeogr 18:103–115. doi:10.2307/2845248

    Article  Google Scholar 

  • Bittkau C, Comes HP (2005) Evolutionary processes in a continental island system: molecular phylogeography of the Aegean Nigella arvensis alliance (Ranunculaceae) inferred from chloroplast DNA. Molec Ecol 14:4065–4083. doi:10.1111/j.1365-294X.2005.02725.x

    Article  CAS  Google Scholar 

  • Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molec Ecol 16:3737–3758. doi:10.1111/j.1365-294X.2007.03435.x

    Article  CAS  Google Scholar 

  • Castellanos MC, Alcántara JM, Rey PJ, Bastida JM (2011) Intra-population comparison of vegetative and floral trait heritabilities estimated from molecular markers in wild Aquilegia populations. Molec Ecol 20:3513–3524. doi:10.1111/j.1365-294X.2011.05094.x

    Google Scholar 

  • Comes HP, Kadereit JW (2003) Spatial and temporal patterns in the evolution of the flora of the European Alpine System. Taxon 52:451–462

    Article  Google Scholar 

  • Corander J, Marttinen P (2006) Bayesian identification of admixture events using multi-locus molecular markers. Molec Ecol 15:2833–2843. doi:10.1111/j.1365-294X.2006.02994.x

    Article  Google Scholar 

  • Corander J, Waldmann P, Sillanpää MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell JE, Krystufek V, Tabbener HE, Milner AD, Connolly T, Sing L, Fluch S, Burg K, Lefèvre F, Achard P, Bordács S, Gebhardt K, Vornam B, Smulders MJM, Broeck AHV, Slycken JV, Storme V, Boerjan W, Castiglione S, Fossati T, Alba N, Agúndez D, Maestro C, Notivol E, Bovenschen J, Dam BC (2005) Postglacial migration of Populus nigra L.: lessons learnt from chloroplast DNA. Forest Ecol Managem 206:71–90. doi:10.1016/j.foreco.2004.10.052

    Article  Google Scholar 

  • Cullen J, Heywood VH (1964) Aquilegia. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA (eds) Flora Europea 1, Cambridge University Press, Cambridge, pp 238–240

    Google Scholar 

  • Díaz T (1986) Aquilegia L. In: Castroviejo S (ed) Flora ibérica: plantas vasculares de la Península Ibérica e Islas Baleares. Real Jardín Botánico de Madrid (CSIC), Madrid, pp 376–387

    Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genet Resources 4:359–361

    Article  Google Scholar 

  • Edh K, Widen B, Ceplitis A (2007) Nuclear and chloroplast microsatellites reveal extreme population differentiation and limited gene flow in the Aegean endemic Brassica cretica (Brassicaceae). Molec Ecol 16:4972–4983. doi:10.1111/j.1365-294X.2007.03585.x

    Article  CAS  Google Scholar 

  • Ehrich D (2006) AFLPdat: a collection of R functions for convenient handling of AFLP data. Molec Ecol Notes 6:603–604. doi:10.1111/j.1471-8286.2006.01380.x

    Article  Google Scholar 

  • Ehrich D, Gaudeul M, Assefa A, Koch MA, Mummenhoff K, Nemomissa S, Consortium I, Brochmann C (2007) Genetic consequences of Pleistocene range shifts: contrast between the Arctic, the Alps and the East African mountains. Molec Ecol 16:2542–2559. doi:10.1111/j.1365-294X.2007.03299.x

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molec Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molec Ecol Notes 7:574–578. doi:10.1111/j.1471-8286.2007.01758.x

    Article  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Fior S, Li MG, Oxelman B, Viola R, Hodges SA, Ometto L, Varotto C (2013) Spatiotemporal reconstruction of the Aquilegia rapid radiation through next-generation sequencing of rapidly evolving cpDNA regions. New Phytol 198:579–592. doi:10.1111/nph.12163

    Article  PubMed  Google Scholar 

  • Garrido JL, Fenu G, Mattana E, Bacchetta G (2012) Spatial genetic structure of Aquilegia taxa endemic to the island of Sardinia. Ann Bot (Oxford) 109:953–964. doi:10.1093/aob/mcs011

    Article  CAS  Google Scholar 

  • Herrera CM, Bazaga P (2009) Quantifying the genetic component of phenotypic variation in unpedigreed wild plants: tailoring genomic scan for within-population use. Molec Ecol 18:2602–2614. doi:10.1111/j.1365-294X.2009.04229.x

    Article  CAS  Google Scholar 

  • Hodges SA (1997) Floral nectar spurs and diversification. Int J Pl Sci 158:81–88

    Article  Google Scholar 

  • Hodges SA, Arnold ML (1994) Columbines - a geographically widespread species flock. Proc Natl Acad Sci USA 91:5129–5132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodges SA, Derieg NJ (2009) Adaptive radiations: from field to genomic studies. Proc Nat Acad Sci USA 106:9947–9954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland BR, Clarke AC, Meudt HM (2008) Optimizing automated AFLP scoring parameters to improve phylogenetic resolution. Syst Biol 57:347–366. doi:10.1080/10635150802044037

    Article  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Molec Ecol Res 9:1322–1332. doi:10.1111/j.1755-0998.2009.02591.x

    Article  Google Scholar 

  • Jaime R, Rey PJ, Alcántara JM, Bastida JM (2013) Glandular trichomes as an inflorescence defence mechanism against insect herbivores in Iberian columbines. Oecologia 172:1051–1060. doi:10.1007/s00442-012-2553-z

    Article  PubMed  Google Scholar 

  • Jaime R, Serichol C, Alcántara JM, Rey PJ (2014) Differences in gas exchange contribute to habitat differentiation in Iberian columbines from contrasting light and water environments. Pl Biol 16:354–364. doi:10.1111/plb.12064

    Article  CAS  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi:10.1093/bioinformatics/btm233

    Article  CAS  PubMed  Google Scholar 

  • Joly S, McLenachan PA, Lockhart PJ (2009) A Statistical approach for distinguishing hybridization and incomplete lineage sorting. Amer Naturalist 174:E54–E70

    Article  Google Scholar 

  • Kadereit JW, Griebeler EM, Comes HP (2004) Quaternary diversification in European alpine plants: pattern and process. Philos Trans Ser B 359:265–274. doi:10.1098/rstb.2003.1389

    Article  Google Scholar 

  • Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Molec Ecol 12:931–949. doi:10.1046/j.1365-294X.2003.01781.x

    Article  CAS  Google Scholar 

  • Krzanowski WJ (1990) Principles of multivariate analysis. Clarendon, Oxford

    Google Scholar 

  • Lega M, Fior S, Li M, Leonardi S, Varotto C (2014) Genetic drift linked to heterogeneous landscape and ecological specialization drives diversification in the alpine endemic columbine Aquilegia thalictrifolia. J Heredity 105:542–554. doi:10.1093/jhered/esu028

    Article  Google Scholar 

  • Lo Presti RM, Oberprieler C (2011) The central Mediterranean as a phytodiversity hotchpotch: phylogeographical patterns of the Anthemis secundiramea group (Compositae, Anthemideae) across the Sicilian Channel. J Biogeogr 38:1109–1124. doi:10.1111/j.1365-2699.2010.02464.x

    Article  Google Scholar 

  • Machado CA, Kliman RM, Markert JA, Hey J (2002) Inferring the history of speciation from multilocus DNA sequence data: the case of Drosophila pseudoobscura and close relatives. Molec Biol Evol 19:472–488. doi:10.1093/oxfordjournals.molbev.a004103

    Article  CAS  PubMed  Google Scholar 

  • Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30. doi:10.1080/10635150500354928

    Article  PubMed  Google Scholar 

  • Magri D, Vendramin GG, Comps B, Dupanloup I, Geburek T, Gömöry D, Latalowa M, Litt T, Paule L, Roure JM, Tantau I, van der Knaap OW, Petit RJ, de Beaulieu JL (2006) A new scenario for the Quaternary history of European beech populations: palaeobotanical evidence and genetic consequences. New Phytol 171:199–221. doi:10.1111/j.1469-8137.2006.01740.x

    Article  CAS  PubMed  Google Scholar 

  • Martín-Bravo S, Valcárcel V, Vargas P, Luceño M (2010) Geographical speciation related to Pleistocene range shifts in the western Mediterranean mountains (Reseda sect. Glaucoreseda, Resedaceae). Taxon 59:466–482

    Google Scholar 

  • Martinell MC, Rovira A, Blanché C, Bosch M (2011) Shift towards autogamy in the extremely narrow endemic Aquilegia paui and comparison with its widespread close relative A. vulgaris (Ranunculaceae). Pl Syst Evol 295:73–82. doi:10.1007/s00606-011-0463-x

    Article  Google Scholar 

  • Medail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345. doi:10.1111/j.1365-2699.2008.02051.x

    Article  Google Scholar 

  • Medrano M, Herrera CM (2008) Geographical structuring of genetic diversity across the whole distribution range of Narcissus longispathus, a habitat-specialist, Mediterranean narrow endemic. Ann Bot (Oxford) 102:183–194. doi:10.1093/aob/mcn086

    Article  Google Scholar 

  • Medrano M, Castellanos C, Herrera CM (2006) Comparative floral and vegetative differentiation between two European Aquilegia taxa along a narrow contact zone. Pl Syst Evol 262:209–224. doi:10.1007/s00606-006-0473-2

    Article  Google Scholar 

  • Mereda P, Hodalova I, Kucera J, Zozomova-Lihova J, Letz DR, Slovak M (2011) Genetic and morphological variation in Viola suavis s.l. (Violaceae) in the western Balkan Peninsula: two endemic subspecies revealed. Syst Biodivers 9:211–231. doi:10.1080/14772000.2011.603903

    Article  Google Scholar 

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Pl Sci 12:106–117. doi:10.1016/j.tplants.2007.02.001

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nieto Feliner G (2014) Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspect Pl Ecol Evol Syst 16:265–278. doi:10.1016/j.ppees.2014.07.002

    Article  Google Scholar 

  • Nold R (2003) Columbines. Aquilegia, Paraquilegia and Semiaquilegia. Timber Press, Cambridge

    Google Scholar 

  • Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. Forest Ecol Managem 156:89–102. doi:10.1016/S0378-1127(01)00636-3

    Article  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Molec Biol Evol 5:568–583. doi:10.1093/oxfordjournals.molbev.a040517

    CAS  PubMed  Google Scholar 

  • Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7:84. doi:10.1186/1741-7007-7-84

    Article  PubMed  PubMed Central  Google Scholar 

  • Prazmo W (1965) Cytogenetic studies on the genus Aquilegia. III. Inheritance of the traits distinguishing different complexes in the genus Aquilegia. Acta Soc Bot Poloniae 34:403–437. doi:10.5586/asbp.1965.031

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ro KE, McPheron BA (1997) Molecular phylogeny of the Aquilegia group (Ranunculaceae) based on internal transcribed spacers and 5.8S nuclear ribosomal DNA. Biochem Syst Ecol 25:445–461. doi:10.1016/S0305-1978(97)00029-X

    Article  CAS  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Molec Ecol Notes 4:137–138. doi:10.1046/j.1471-8286.2003.00566.x

    Article  Google Scholar 

  • Rymer PD, Manning JC, Goldblatt P, Powell MP, Savolainen V (2010) Evidence of recent and continuous speciation in a biodiversity hotspot: a population genetic approach in southern African gladioli (Gladiolus; Iridaceae). Molec Ecol 19:4765–4782. 10.1111/j.1365-294X.2010.04794.x

    Article  Google Scholar 

  • Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Molec Ecol Notes 6:569–572. doi:10.1111/j.1471-8286.2006.01225.x

    Article  Google Scholar 

  • Schönswetter P, Tribsch A (2005) Vicariance and dispersal in the alpine perennial Bupleurum stellatum L. (Apiaceae). Taxon 54:725–732

    Article  Google Scholar 

  • Strand AE, Milligan BG, Pruitt CM (1996) Are populations islands? Analysis of chloroplast DNA variation in Aquilegia. Evolution 50:1822–1829. doi:10.2307/2410739

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic analysis using parsimony (*and other methods).Version 4. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Molec Ecol 7:453–464. doi:10.1046/j.1365-294x.1998.00289.x

    Article  CAS  Google Scholar 

  • Taylor RJ (1967) Interspecific hybridization and its evolutionary significance in genus Aquilegia. Brittonia 19:374–390. doi:10.2307/2805535

    Article  Google Scholar 

  • Thompson JD (2005) Plant Evolution in the Mediterranean. Oxford University Press, New York

    Book  Google Scholar 

  • Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author, Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, Bruxelles

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP - a New Technique for DNA-Fingerprinting. Nucl Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang RL, Wakeley J, Hey J (1997) Gene flow and natural selection in the origin of Drosophila pseudoobscura and close relatives. Genetics 147:1091–1106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang AL, Yang MH, Liu JQ (2005) Molecular phylogeny, recent radiation and evolution of gross morphology of the rhubarb genus Rheum (Polygonaceae) inferred from chloroplast DNA trnL-F sequences. Ann Bot (Oxford) 96:489–498. doi:10.1093/aob/mci201

    Article  CAS  Google Scholar 

  • Whitfield JB, Lockhart PJ (2007) Deciphering ancient rapid radiations. Trends Ecol Evol 22:258–265. doi:10.1016/j.tree.2007.01.012

    Article  PubMed  Google Scholar 

  • Whittall JB, Hodges SA (2007) Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447:U706–U712

    Article  Google Scholar 

  • Whittall JB, Medina-Marino A, Zimmer EA, Hodges SA (2006) Generating single-copy nuclear gene data for a recent adaptive radiation. Molec Phylogen Evol 39:124–134. doi:10.1016/j.ympev.2005.10.010

    Article  CAS  Google Scholar 

  • Whittemore AT (1997) Aquilegia. In: Morin NR (ed) Flora of North America. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgements

Authors thank D. Guzmán and A.R. Larrinaga for his invaluable aid while sampling at Pyrenees. At Sierras de Segura y Cazorla, A. Benavente helped us finding locations and S. Arenas assisted in the field. We also benefited from the helpful advice of P. Bazaga on laboratory procedures. M.C. Martinell provided DNA extract from Avp. We also thank the Remote Sensing and Geographic Information Systems Laboratory of EBD (LAST-EBD). Bioinformatic STRUCTURE analyses were carried out on the (earlier times) freely available Bioportal (www.bioportal.uio.no). This work was partly supported by Grant BOS2003-03979-C02-01, BOS2003-03979-C02-02, and CGL2006-01355/BOS from Ministerio Ciencia y Tecnología. During part of this work JLG was granted by the postdoctoral program (EX2003-0376) of Ministerio Educación, Cultura y Deporte, and by the Severo Ochoa Program for Centres of Excellence in R+D+I (SEV-2012-0262) of Ministerio de Economía y Competitividad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose L. Garrido.

Ethics declarations

Human and animal rights

The authors declare that the research included in this article accomplishes with the ethical standards of the journal and with all legal requirements regarding samples collection. All authors have been informed and consent with this submission. Founding sources have been declared both in Acknowledgements section as well as in the online submission form. The research does not involve human participants and/or animals.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Pablo Vargas.

Electronic supplementary material

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Details on primers combinations used.

Online Resource 2. Variation in ∆K parameter for the STRUCTURE analysis.

Online Resource 3. Admixture analysis performed with BAPS.

Online Resource 4. STRUCTURE analysis specifically performed on Prebetic locations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garrido, J.L., Alcántara, J.M., Rey, P.J. et al. Geographic genetic structure of Iberian columbines (gen. Aquilegia). Plant Syst Evol 303, 1145–1160 (2017). https://doi.org/10.1007/s00606-017-1428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-017-1428-5

Keywords

Navigation