Skip to main content
Log in

Floral anatomy and development of Saxofridericia aculeata (Rapateaceae) and its taxonomic and phylogenetic significance

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Floral anatomy and development of Saxofridericia aculeata Körn was studied in a comparative approach to contribute to the understanding of the family. Flowers at different developmental stages were analysed with light and scanning electron microscopy, and the nature of the exudate secreted by the floral trichomes was investigated by histochemical tests. The anatomical characteristics observed in S. aculeata flowers were compared with those from other Rapateaceae species by a cluster analysis (UPGMA). The dendrogram generated reflects the groupings that emerged in phylogenetic molecular analyses, highlighting the usefulness of floral anatomy for taxonomy and for the understanding of infrafamilial relationships. The exudate secreted by the trichomes has a polysaccharidic composition. Such trichomes (colleters) occur in the sepals, petals, filaments and around the gynoecium; they are initiated at mid-stage of floral development and are an apomorphy of the family. The flowers are pentacyclic, presenting three initially free sepals, petals, stamens and carpels that mature in a centripetal order. The connate portion of the corolla, which is also adnate to the stamens, has a late development by zonal growth. Gynoecium formation is a combination of postgenital and congenital fusion processes. Data on floral organogenesis of Rapateaceae are first reported here and support the early diverging position of the family in Poales, close to Bromeliaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ascensão L, Pais MS (1998) The leaf capitate trichomes of Leonotis leonurus: histochemistry, ultrastructure and secretion. Ann Bot (Oxford) 81:263–271. doi:10.1006/anbo.1997.0550

    Article  Google Scholar 

  • Ascensão L, Mota L, Castro MM (1999) Glandular trichomes on the leaves and flowers of Plectranthus ornatus: morphology, distribution and histochemistry. Ann Bot (Oxford) 84:437–447. doi:10.1006/anbo.1999.0937

    Article  Google Scholar 

  • Berry PE (2004) Rapateaceae. In: Berry PE, Yatskievych K, Holst BK (eds) Flora of the venezuelan Guayana, Poaceae-Rubiaceae, vol 8. Missouri Botanical Garden Press, St. Louis, pp 413–472

    Google Scholar 

  • Böhme S (1988) Bromelienstudien III. Vergleichende Untersuchungen zu Bau, Lage und Systematischer Verwertbarkeit der Septalnektarien von Bromeliaceen. Trop Subtrop Pflanzenwelt 62:119–274

    Google Scholar 

  • Boke NH (1948) Development of the perianth in Vinca rosea L. Amer J Bot 35:413–423

    Article  Google Scholar 

  • Bouchenak-Khelladi Y, Muasya AM, Linder HP (2014) A revised evolutionary history of Poales: origins and diversification. Bot J Linn Soc 175:4–16. doi:10.1111/boj.12160

    Article  Google Scholar 

  • Bremer K (2002) Gondwanan evolution of the grass alliance of families (Poales). Evolution 56:1374–1387. doi:10.1111/j.0014-3820.2002.tb01451.x

    Article  CAS  PubMed  Google Scholar 

  • Cardoso-Gustavson P, Campbell LM, Mazzoni-Viveiros SC, Barros F (2014) Floral colleters in Pleurothallidinae (Epidendroideae: Orchidaceae). Amer J Bot 101:587–597. doi:10.3732/ajb.1400012

    Article  Google Scholar 

  • Carlquist S (1966) Anatomy of Rapateaceae—roots and stems. Phytomorphology 16:17–38

    Google Scholar 

  • Carlquist S (1969) Rapateaceae. In: Tomlinson PB (ed) Anatomy of the monocotyledons, Commelinales-Zingiberales. Oxford University Press, London, pp 129–145

    Google Scholar 

  • Chase MW, Fay MF, Devey DS, Maurin O, Rønsted N, Davies TJ, Pillon Y, Petersen G, Seberg O, Tamura MN, Asmussen CB, Hilu K, Borsch T, Davis JI, Stevenson DW, Pires JC, Givnish TJ, Sytsma KJ, McPherson MA, Graham SW, Rai HS (2006) Multigene analyses of monocot relationships: a summary. Aliso 23:62–74

    Google Scholar 

  • Daltin AL, Scatena VL, Oriani A (2015) Leaf and inflorescence axis anatomy of Brazilian species of Rapateoideae (Rapateaceae, Poales). Anais Acad Brasil Ci 87:157–171. doi:10.1590/0001-3765201520140071

    Article  Google Scholar 

  • Davis JI, Stevenson DW, Petersen G, Seberg O, Campbell LM, Freudenstein JV, Goldman DH, Hardy CR, Michelangeli FA, Simmons MP, Specht CD, Vergara-Silva F, Gandolfo M (2004) Phylogeny of the monocots, as inferred from rbcL and atpA sequence variation, and a comparison of methods for calculating jackknife and bootstrap value. Syst Bot 29:467–510. doi:10.1600/0363644041744365

    Article  Google Scholar 

  • Endress PK (1990) Patterns of floral construction in ontogeny and phylogeny. Biol J Linn Soc 39:153–175. doi:10.1111/j.1095-8312.1990.tb00509.x

    Article  Google Scholar 

  • Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, Cambridge. doi:10.1046/j.1420-9101.1996.9010120.x

    Google Scholar 

  • Endress PK (2011) Evolutionary diversification of the flowers in angiosperms. Amer J Bot 98:370–396. doi:10.3732/ajb.1000299

    Article  Google Scholar 

  • Fahn A (1974) Plant anatomy. Pergamon Press, Oxford

    Google Scholar 

  • Fahn A (2000) Structure and function of secretory cells. Advances Bot Res 31:37–75. doi:10.1016/S0065-2296(00)31006-0

    Article  CAS  Google Scholar 

  • Feder N, O’Brien TP (1968) Plant microtechnique: some principles and new methods. Amer J Bot 55:123–142. doi:10.2307/2440500

    Article  Google Scholar 

  • Ferrari RC, Scatena VL, Oriani A (2014) Leaf and inflorescence peduncle anatomy: a contribution to the taxonomy of Rapateaceae. Pl Syst Evol 300:1579–1590. doi:10.1007/s00606-014-0984-1

    Article  Google Scholar 

  • Fisher DB (1968) Protein staining of ribboned epon sections for light microscopy. Histochemie 16:92–96. doi:10.1007/BF00306214

    Article  CAS  PubMed  Google Scholar 

  • Gale RMO, Owens SJ (1983) Cell distribution and surface morphology in petals, androecia and styles of Commelinaceae. Bot J Linn Soc 87:247–262. doi:10.1111/j.1095-8339.1983.tb00993.x

    Article  Google Scholar 

  • Garcia-Vallvè S, Palau J, Romeu A (1999) Horizontal gene transfer in glycosyl hydrolases inferred from codon usage in Escherichia coli and Bacillus subtilis. Molec Biol Evol 16:1125–1134

    Article  PubMed  Google Scholar 

  • Gerrits PO, Smid L (1983) A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. J Microscopy 132:81–85. doi:10.1111/j.1365-2818.1983.tb04711.x

    Article  CAS  Google Scholar 

  • Givnish TJ, Evans TM, Zjhra ML, Patterson TB, Berry PE, Sytsma KJ (2000) Molecular evolution, adaptive radiation, and geographic diversification in the amphiatlantic family Rapateaceae: evidence from ndhF sequences and morphology. Evolution 54:1915–1937. doi:10.1111/j.0014-3820.2000.tb01237.x

    Article  CAS  PubMed  Google Scholar 

  • Givnish TJ, Millam KC, Evans TM, Hall JC, Pires JC, Berry PE, Sytsma KJ (2004) Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American–African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. Int J Pl Sci 165:35–54. doi:10.1086/421067

    Article  Google Scholar 

  • Givnish TJ, Ames M, McNeal JR, McKain MR, Steele PR, dePamphilis CW, Graham SW, Pires JC, Stevenson DW, Zomlefer WB, Briggs BG, Duvall MR, Moore MJ, Heaney JM, Soltis DE, Soltis PS, Thiele K, Leebens-Mack JH (2010) Assembling the tree of the monocotyledons: plastome sequence phylogeny and evolution of Poales. Ann Missouri Bot Gard 97:584–616. doi:10.3417/2010023

    Article  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. W. H. Freeman and Company, San Francisco. doi:10.1126/science.140.3567.634-a

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw-Hill, New York

    Google Scholar 

  • Kaplan DR (1968) Structure and development of the perianth in Downingia bacigalupii. Amer J Bot 55:406–420

    Article  Google Scholar 

  • Leitão CAE, Cortelazzo AL (2008) Structural and histochemical characterisation of the colleters of Rodriguezia venusta (Orchidaceae). Austral J Bot 56:161–165. doi:10.1071/BT07114

    Article  Google Scholar 

  • Levin DA (1971) Plant phenolics: an ecological perspective. Amer Naturalist 105:157–181. doi:10.1086/282712

    Article  CAS  Google Scholar 

  • Linder HP, Rudall PJ (2005) Evolutionary history of Poales. Annual Rev Ecol Evol Syst 36:107–124. doi:10.1146/annurev.ecolsys.36.102403.135635

    Article  Google Scholar 

  • Maguire B (1958) Rapateaceae. The botany of the Guayana Highland. Part III. Mem New York Bot Gard 10:19–49

    Google Scholar 

  • Maguire B (1965) Rapateaceae. The botany of the Guayana Highland. Part VI. Mem New York Bot Gard 12:69–102

    Google Scholar 

  • Mayer JLS, Cardoso-Gustavson P, Appezzato-Da-Glória B (2011) Colleters in monocots: new record for Orchidaceae. Flora 206:185–190. doi:10.1016/j.flora.2010.09.003

    Article  Google Scholar 

  • Mayer JLS, Carmello-Guerreiro SM, Mazzafera P (2013) A functional role for the colleters of coffee flowers. AOB Plants 5:plt029. doi:10.1093/aobpla/plt029

    Article  PubMed Central  Google Scholar 

  • Miguel EC, Moraes DG, Cunha M (2009) Stipular colleters in Psychotria nuda (Cham. & Schltdl.) Wawra (Rubiaceae): micromorphology, anatomy and cristals microanalysis. Acta Bot Brasil 23:1034–1039. doi:10.1590/S0102-33062009000400013

    Article  Google Scholar 

  • Monteiro RF (2015) Rapateaceae. Lista de espécies da flora do Brasil - Jardim Botânico do Rio de Janeiro. Available at: http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB205. Accessed 11 Aug 2016

  • Nicholson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annual Rev Phytopathol 30:369–389. doi:10.1146/annurev.py.30.090192.002101

    Article  CAS  Google Scholar 

  • Nishino E (1983) Corolla tube formation in the Tubiflorae and Gentianales. Bot Mag Tokyo 96:223–243. doi:10.1007/BF02499003

    Article  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by Toluidine Blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Oriani A, Scatena VL (2013) The taxonomic value of floral characters in Rapateaceae (Poales-Monocotyledons). Pl Syst Evol 299:291–303. doi:10.1007/s00606-012-0721-6

    Article  Google Scholar 

  • Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: from chemistry to biology. Molecules 14:2202–2211. doi:10.3390/molecules14062202

    Article  CAS  Google Scholar 

  • Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69:377–440. doi:10.1663/0006-8101(2004)069[0377:SABOSB]2.0.CO;2

    Article  Google Scholar 

  • Ramalingan K, Ravindranath MH (1970) Histochemical significance of green metachromasia to Toluidine Blue. Histochemie 24:322–327. doi:10.1007/BF00278217

    Google Scholar 

  • Remizowa MV, Sokoloff DD, Rudall PJ (2010) Evolutionary history of the monocot flower. Ann Missouri Bot Gard 97:617–645. doi:10.3417/2009142

    Article  Google Scholar 

  • Remizowa MV, Sokoloff DD, Campbell LM, Stevenson DW, Rudall PJ (2011) Harperocallis is congeneric with Isidrogalvia (Tofieldiaceae, Alismatales): evidence from comparative floral morphology. Taxon 60:1076–1094

    Google Scholar 

  • Remizowa MV, Kuznetsov AN, Kuznetsova SP, Rudall PJ, Nuraliev MS, Sokoloff DD (2012) Flower development and vasculature in Xyris grandis (Xyridaceae, Poales); a case study for examining petal diversity in monocot flowers with a double perianth. Bot J Linn Soc 170:93–111. doi:10.1111/j.1095-8339.2012.01267.x

    Article  Google Scholar 

  • Reynders M, Vrijdaghs A, Larridon I, Huygh W, Leroux O, Muasya AM, Goetghebeur P (2012) Gynoecial anatomy and development in Cyperoideae (Cyperaceae, Poales): congenital fusion of carpels facilitates evolutionary modifications in pistil structure. Pl Ecol Evol 145:96–125. doi:10.5091/plecevo.2012.675

    Article  Google Scholar 

  • Ronse Decraene LP, Linder HP, Smets EF (2002) Ontogeny and evolution of the flowers of South African Restionaceae with special emphasis on the gynoecium. Pl Syst Evol 231:225–258. doi:10.1007/s006060200021

    Article  Google Scholar 

  • Rudall PJ (1994) Anatomy of flowering plants. Cambridge University Press, New York. doi:10.1017/CBO9780511801709

    Google Scholar 

  • Rudall PJ, Wolfgang S, Cunniff J, Kellogg EA, Briggs BG (2005) Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. Amer J Bot 92:1432–1443. doi:10.3732/ajb.92.9.1432

    Article  Google Scholar 

  • Sajo MG, Rudall PJ (2012) Morphological evolution in the graminid clade: comparative floral anatomy of the grass relatives Flagellariaceae and Joinvilleaceae. Bot J Linn Soc 170:393–404. doi:10.1111/j.1095-8339.2012.01283.x

    Article  Google Scholar 

  • Sajo MG, Rudall PJ, Prychid CJ (2004) Floral anatomy of Bromeliaceae, with particular reference to the evolution of epigyny and septal nectaries in commelinid monocots. Pl Syst Evol 247:215–231. doi:10.1007/s00606-002-0143-0

    Article  Google Scholar 

  • Sajo MG, Longhi-Wagner H, Rudall PJ (2007) Floral development and embryology in the early-divergent grass Pharus. Int J Pl Sci 168:181–191. doi:10.1086/509790

    Article  Google Scholar 

  • Smets EF, Ronse Decraene LP, Caris P, Rudall PJ (2000) Floral nectaries in monocotyledons: distribution and evolution. In: Wilson KL, Morrison DA (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 230–240

    Google Scholar 

  • Sokoloff DD, Remizowa MV, Linder HP, Rudall PJ (2009) Morphology and development of the gynoecium in Centrolepidaceae: the most remarkable range of variation in Poales. Amer J Bot 96:1925–1940. doi:10.3732/ajb.0900074

    Article  Google Scholar 

  • Soltis DE, Soltis PS, Albert VA, Oppenheimer DG, Hong Ma CW, Frohlich MW, Theißen G (2002) Missing links: the genetic architecture of flower and floral diversification. Trends Pl Sci 7:22–31. doi:10.1016/S1360-1385(01)02098-2

    Article  CAS  Google Scholar 

  • Stevenson DW (1998) Mayacaceae. In: Kubitzki K (ed) The families and genera of vascular plants—IV monocotyledons. Springer, Berlin, pp 294–296. doi:10.1007/978-3-662-03531-3

    Google Scholar 

  • Stevenson DW, Colella M, Boom B (1998) Rapateaceae. In: Kubitzki K (ed) The families and genera of vascular plants—IV monocotyledons. Springer, Berlin, pp 415–424. doi:10.1007/978-3-662-03531-3

    Google Scholar 

  • Strack D (1997) Phenolic metabolism. In: Dey PM, Harbore JB (eds) Plant biochemistry. Academic Press, San Diego, pp 387–390

    Chapter  Google Scholar 

  • Stützel T (1990) “Appendices” am Gynoeceum der Xyridaceen. Morphogenie, Funktion und systematische Bedeutung. Beitr Biol Pflanzen 65:275–299

    Google Scholar 

  • Swain T (1977) Secondary compounds as protective agents. Annual Rev Pl Physiol 28:479–501. doi:10.1146/annurev.pp.28.060177.002403

    Article  CAS  Google Scholar 

  • Tozin LRS, Carvalho SF, Machado SR, Rodrigues TM (2015) Glandular trichome diversity on leaves of Lippia origanoides Kunth and Lippia stachyoides Cham. (Verbenaceae): morphology, histochemistry and ultrastructure. Botany 93:297–306. doi:10.1139/cjb-2014-0251

    Article  CAS  Google Scholar 

  • Tucker S (1992) The role of floral development in studies of legume evolution. Canad J Bot 70:692–700. doi:10.1139/b92-089

    Article  Google Scholar 

  • Tucker S (1997) Floral evolution, development, and convergence: the hierarchical-significance hypothesis. Int J Pl Sci 158(6 Suppl):S143–S161

    Article  Google Scholar 

  • van Heel WA (1988) On the development of some gynoecia with septal nectaries. Blumea 33:477–504

    Google Scholar 

  • Venturelli M, Bouman F (1986) Embryology and seed development in Mayaca fluviatilis (Mayacaceae). Acta Bot Neerl 35:497–516. doi:10.1111/j.1438-8677.1986.tb00489.x

    Article  Google Scholar 

  • Venturelli M, Bouman F (1988) Development of ovule and seed in Rapateaceae. Bot J Linn Soc 97:267–294. doi:10.1111/j.1095-8339.1988.tb01584.x

    Article  Google Scholar 

  • Verbeke JA (1992) Fusion events during floral morphogenesis. Annual Rev Pl Physiol Pl Molec Biol 43:583–598. doi:10.1146/annurev.pp.43.060192.003055

    Article  Google Scholar 

  • Vrijdaghs A, Goetghebeur P, Muasya AM, Caris P, Smets E (2005) Floral ontogeny in Ficinia and Isolepis (Cyperaceae), with focus in the nature and origin of the gynophore. Ann Bot (Oxford) 96:1247–1264. doi:10.1093/aob/mci276

    Article  CAS  Google Scholar 

  • Vrijdaghs A, Muasya AM, Goetghebeur P, Caris P, Nagels A, Smets E (2009) A floral ontogenetic approach to questions of homology within the Cyperoideae (Cyperaceae). Bot Rev 75:30–51. doi:10.1007/s12229-008-9021-9

    Article  Google Scholar 

  • Wagner GE (1991) Secreting glandular trichomes: more than just hairs. Pl Physiol 96:675–679. doi:10.1104/pp.96.3.675

    Article  CAS  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Advances Bot Res 31:1–35. doi:10.1016/S0065-2296(00)31005-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank FAPESP—Fundação de Amparo à Pesquisa do Estado de São Paulo (Process Number 2014/22991-1) and CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico (Process Number 168277/2014-0) for financial support. We also thank Dr Alessandra Ike Coan for collecting the plant material; the technicians Monika Iamonte and Antonio Teruyoshi Yabuki for their support at the Laboratório de Microscopia Eletrônica, UNESP; and Prof. Peter Endress and the anonymous reviewers for their critical comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata C. Ferrari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Handling editor: Peter K. Endress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, R.C., Oriani, A. Floral anatomy and development of Saxofridericia aculeata (Rapateaceae) and its taxonomic and phylogenetic significance. Plant Syst Evol 303, 187–201 (2017). https://doi.org/10.1007/s00606-016-1361-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-016-1361-z

Keywords

Navigation