Skip to main content
Log in

First fossil record of Staphylea L. (Staphyleaceae) from North America, and its biogeographic implications

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The occurrences of Staphylea L. (Staphyleaceae) fossils have been abundantly documented from the Cenozoic of Eurasia, but none has been confirmed from North America to date. In this study, we describe Staphylea levisemia sp. nov. on the basis of seed remains from the latest Miocene to earliest Pliocene of northeastern Tennessee, southeastern USA. The seeds are characterized by a smoothly inflated body, a large hilar scar perforated by several vascular traces and bordered by a distinctive lip-like rim, a cuticle coating the seed coat interior, and seed coat section containing weakly developed tiny lumina. According to the paleogeographic distribution of the genus, it is hypothesized that Staphylea originated from western Eurasia no later than the late Oligocene, and arrived in eastern North America no later than the late Neogene, most possibly through the North Atlantic land bridges like many other seed plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bell WA (1957) Flora of the upper cretaceous nanaimo group of vancouver Island, British Columbia. Geol Surv Canad Mem 293:1–84

    Google Scholar 

  • Blackwell WH (1983) Fossil wood from “Sand Hill”, western central Mississippi. Bull Torrey Bot Club 110:63–69

    Article  Google Scholar 

  • Bojňanský V, Fargašová A (2007) Atlas of seeds and fruits of Central and East-European flora: the Carpathian Mountains region. Springer, Dordrecht, pp 399–401

    Google Scholar 

  • Brown RW (1933) Fossil plants from the Aspen shale of southwestern Wyoming. Proc US Natl Mus 82:1–10

    Article  Google Scholar 

  • Brown RW (1962) Paleocene flora of the Rocky Mountains and Great Plains. US Geol Surv Prof Paper 375:1–119

    Google Scholar 

  • Crabtree DR (1987) Angiosperms of the Northern Rocky Mountains: albian to campanian (Cretaceous) megafossil floras. Ann Missouri Bot Gard 74:707–747

    Article  Google Scholar 

  • Czaja A (2003) Paleocarpological investigations of the taphocoenoses of the Lower- and Middle Miocene from the opencast mine Berzdorf/Upper Lusatica (Saxony). Palaeontographica Abt B 265:1–148

    Google Scholar 

  • Denk T, Grimsson F, Zetter R (2010) Episodic migration of oaks to iceland—evidence for a North Atlantic “land bridge” in the latest Miocene. Amer J Bot 97:276–287

    Article  Google Scholar 

  • DeSantis LRG, Wallace SC (2008) Neogene forests from the Appalachians of Tennessee, USA: geochemical evidence from fossil mammal teeth. Palaeogeogr Palaeocl 266:59–68

    Article  Google Scholar 

  • Dickison WC (1987) A palynological study of the Staphyleaceae. Grana 26:11–24

    Article  Google Scholar 

  • Dorofeev PI (1963) The Tertiary floras of western Siberia. Komarov Botanical Institute, Academy of Sciences of the U.S.S.R., pp 209–211

  • Gong F, Karsai I, Liu Y-S (2010) Vitis seeds (Vitaceae) from the late Neogene Gray Fossil Site, northeastern Tennessee, U.S.A. Rev Palaeobot Palynol 162:71–83

    Article  Google Scholar 

  • Gregor HJ (1978) The Miocene fruit- and seed-floras of the Oberpfalz Browncoal. I. Findings from the sandy interbeds. Palaeontographica Abt B 167:8–103

    Google Scholar 

  • Gregory-Wodzicki KM (1997) The late eocene house range flora, Sevier Desert, Utah: paleoclimate and paleoelevation. Palaios 12:552–567

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontogical statistical software for education and data analysis. Palaeontol Electron 4

  • Hollick A (1929) New species of fossil plants from the Tertiary shales near De Beque, Colorado. Bull Torrey Bot Club 56:93–96

    Article  Google Scholar 

  • Huang Y-J, Liu Y-S, Zavada M (2014) New fossil fruits of Carya (Juglandaceae) from the latest Miocene to earliest Pliocene in Tennessee, eastern United States. J Syst Evol 52:508–520

    Article  Google Scholar 

  • Hulbert RC, Wallace SC, Klippel WE, Parmalee PW (2009) Cranial morphology and systematics of an extraordinary sample of the late Neogene dwarf tapir, Tapirus polkensis (Olsen). J Paleontol 83:238–262

    Article  Google Scholar 

  • Ickert-Bond SM, Wen J (2006) Phylogeny and biogeography of Altingiaceae: evidence from combined analysis of five non-coding chloroplast regions. Molec Phylogen Evol 39:512–528

    Article  CAS  Google Scholar 

  • Kirchheimer F (1957) Die Laubgewächse der Braunkohlenzeit mit einem kritischen Katalog ihrer Früchte und Samen. Knapp Verlag, Halle/Saale, pp 712–713

    Google Scholar 

  • Knowlton FH (1917) Fossil floras of the Vermejo and Raton formations of Colorado and New Mexico. US Geol Surv Prof Paper 101:223–435

    Google Scholar 

  • Kovar-Eder J, Meller B (2001) Plant assemblages from the hanging wall sequence of the opencast mine Oberdorf N Voitsberg, Styria (Austria, Early Miocene, Ottnangian). Palaeontographica Abt B 259:65–112

    Google Scholar 

  • Kräusel R (1937) Pflanzenreste aus den diluvialen Ablagerungen im Ruhr-Emscher-Lippe-Gebiete. Decheniana 95A:207–240

    Google Scholar 

  • Li D, Cai J, Wen J (2008) Staphyleaceae. In: Wu ZY, Raven PH (eds) Flora of China. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp 498–504

  • Lin Q, Li C, Liu CJ, Yang ZR (2007) Seed morphology of the genus Illicium Linn. (Illiciaceae). Bull Bot Res 27:145–150

    Google Scholar 

  • Linnaeus C (1753) Species plantarum, exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas. Impensis Laurentii Salvii, Holmiae

  • Liu Y-S, Jacques FMB (2010) Sinomenium macrocarpum sp. nov. (Menispermaceae) from the Miocene-Pliocene transition of Gray, northeast Tennessee, USA. Rev Palaeobot Palynol 159:112–122

    Article  Google Scholar 

  • MacGinitie HD (1953) Fossil plants of the Florissant beds, Colorado. Carnegie Inst Washington Pub 599:1–198

    Google Scholar 

  • Mädler K (1939) Die pliozäne flora von Frankfurt am main. Abh Senckenberg Naturf Ges 446:1–201

    Google Scholar 

  • Mai DH (1997) Floras from the Upper Oligocene at the northern margin of Lausitz, Saxony. Palaeontographica Abt B 244:1–124

    Google Scholar 

  • Mai DH (2001) The Middle and Upper Miocene floras of the Meuro and Rauno sequences in the Lusatica region, part II: dicotyledones. Palaeontographica Abt B 257:35–174

    Google Scholar 

  • Mai DH, Walther H (1988) Die pliozänen Floren von Thüringen, Deutsche Demokratische Republik. Quartärpaläontologie 7:55–297

    Google Scholar 

  • Manchester SR (1999) Biogeographical relationship of North America Tertiary floras. Ann Missouri Bot Gard 86:472–522

    Article  Google Scholar 

  • Manchester SR (2001) Update on the megafossil flora of Florissant, Colorado. In: Evanoff E, Gregory-Wodzicki KM, Johnson KR (eds) Fossil flora and stratigraphy of the Florissant Formation, Colorado. Proc Denver Mus Nat Sci Ser 4:137–161

  • Meller B, Kovar-Eder J, Zetter R (1999) Lower Miocene leaf, palynomorph, and diaspore assemblages from the base of the lignite-bearing sequence in the opencast mine Oberdorf, N Voitsberg (Styria, Austria) as an indication of “Younger Mastixioid” vegetation. Palaeontographica Abt B 252:123–179

    Google Scholar 

  • Miki S (1937) Plant fossils from the Stegodon Beds and the Elephas Beds near Akashi. Jap J Bot 8:303–341

    Google Scholar 

  • Miki S, Kokawa S (1962) Late Cenozoic floras of Kyushu, Japan. J Biol Osaka City Univ 13:65–85

    Google Scholar 

  • Oh I-C, Denk T, Friis EM (2003) Evolution of Illicium (Illiciaceae): mapping morphological characters on the molecular tree. Pl Syst Evol 240:175–209

    Article  Google Scholar 

  • Ozaki K (1991) Late Miocene and Pliocene floras in central Honshu, Japan. Bull Kanagawa Prefect Mus 1–244

  • Peruzzi L, Passalacqua NG, Jarvis CE (2004) Lectotypification of Aizoon hispanicum, Plantago albicans, and Staphylea pinnata, names of three Linnaean species occurring in Calabria (S. Italy). Taxon 53:540–542

    Article  Google Scholar 

  • Shunk AJ, Driese SG, Clark GM (2006) Latest Miocene to earliest Pliocene sedimentation and climate record derived from paleosinkhole fill deposites, Gray Fossil Site, northeastern Tennessee, U.S.A. Palaeogeogr Palaeocl 231:265–278

    Article  Google Scholar 

  • Simmons SL (2007) Staphyleaceae. In: Kubitzki K (ed) Flowering plants. Eudicots. The families and genera of vascular plants, vol 9. Springer, Berlin, Heidelberg, pp 440–445

    Chapter  Google Scholar 

  • Sjin Q-J, Wei Z-X (2002) Studies on pollen morphology of Stachyuraceae and Staphyleaceae. Acta Bot Yunnanica 24:57–63

    Google Scholar 

  • Sosa V (1988) Staphyleaceae. Flora de Veracruz 57:1–11

    Google Scholar 

  • Spongberg S (1971) The Staphyleaceae in the southeastern United States. J Arnold Arbor 52:196–203

    Google Scholar 

  • Staszkiewicz J (1997) The variability of leaves and seeds of Staphylea pinnata. Fragm Flor Geobot Ser Polon Suppl 2:161–172

    Google Scholar 

  • Szafer W (1947) The Pliocene flora of Krościenka in Poland. II. Descriptive part. Polskiej Akademii Umiejętności, Kraków

  • Szafer W (1954) Plioceńska flora okolic Czorsztynai jej stosunek do plejstocenu. Prace Inst Geol 11:1–238

    Google Scholar 

  • Tiffney BH (1979) Fruits and seeds of the Brandon Lignite III. Turpinia (Staphyleaceae). Brittonia 31:39–51

    Article  Google Scholar 

  • Tiffney BH (1985) Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J Arnold Arbor 66:73–94

    Google Scholar 

  • Tiffney BH, Manchester SR (2001) The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int J Pl Sci 162:3–17

    Article  Google Scholar 

  • Van der Burgh J (1983) Allochthonous seed and fruit floras from the Pliocene of the lower Rhine Basin. Rev Palaeobot Palynol 40:33–90

    Article  Google Scholar 

  • Van der Burgh J (1987) Miocene floras in the lower Rhenish Basin and their ecological interpretation. Rev Palaeobot Palynol 52:99–366

    Google Scholar 

  • Wallace SC, Wang X (2004) Two new carnivores from an unusual late Tertiary forest biota in eastern North America. Nature 431:556–559

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Manchester SR, Gregor H-J, Shen S, Li Z-Y (2013) Fruits of Koelreuteria (Sapindaceae) from the Cenozoic throughout the northern hemisphere: their ecological, evolutionary, and biogeographic implications. Amer J Bot 100:422–449

    Article  Google Scholar 

  • Weaver RE (1980) The bladdernuts. Arnoldia 40:76–93

    Google Scholar 

  • Wen J (1999) Evolution of eastern Asian and eastern North American disjunct pattern in flowering plants. Ann Rev Ecol Syst 30:421–455

    Article  Google Scholar 

  • Wen J, Ickert-Bond SM, Nie Z-L, Li R (2010) Timing and modes of evolution of eastern Asian-North American biogeographic disjunctions in seed plants. In: Long M, Gu H, Zhou Z (eds) Darwin’s heritage today: proceedings of the Darwin 200 Beijing International Conference. Higher Education Press, Beijing, pp 252–269

    Google Scholar 

  • Whitelaw JL, Mickus K, Whitelaw MJ, Nave J (2008) High-resolution gravity study of the Gray Fossil Site. Geophysics 73:B25–B32

    Article  Google Scholar 

  • Xie L, Yang ZY, Wen J, Li DZ, Yi TS (2014) Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. Molec Phylogen Evol 77:136–146

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Herbarium of East Tennessee State University, the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences, and Dr. Froster Levy for help with extant seed materials; the Central Lab of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences for technical assistance with the SEM; Dr. Wen-Long He for picturing the fossil seeds; Miss Hai Zhu for observing the extant seeds of Staphylea from herbarium specimens; Dr. Li Wang for scanning the fossil and extant seeds with the SEM; students from Dr. Jun Wen’s research group for work on molecular phylogenetic analysis; and the two anonymous reviewers for improving the manuscript. This work was supported by NSF EAR-0746105, and partly by the National Natural Science Foundation of China (Nos. 31300187, 41372002, and 41172008).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Sheng Liu or Cheng Quan.

Additional information

Handling editor: Jurg Schonenberger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

606_2015_1224_MOESM1_ESM.pdf

Online Resource 1 A taxon-characteristic matrix that includes eight taxa, i.e., the new fossil taxon plus seven extant species of Staphylea, and 23 characteristics (PDF 3549 kb) (PDF 3549 kb)

606_2015_1224_MOESM2_ESM.pdf

Online Resource 2 Seeds of Turpinia occidentalis from the United States National Herbarium (US), Smithsonian Institution, Washington, D.C., USA, with the voucher specimen from St. Elizabeth Parish, P. Arevedo-Rdgz 9532 (US) (PDF 821 kb) (PDF 821 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YJ., Liu, YS., Wen, J. et al. First fossil record of Staphylea L. (Staphyleaceae) from North America, and its biogeographic implications. Plant Syst Evol 301, 2203–2218 (2015). https://doi.org/10.1007/s00606-015-1224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1224-z

Keywords

Navigation