Skip to main content
Log in

Comparative transcriptome of rhizome and leaf in Ligusticum Chuanxiong

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The rhizome was the pharmaceutical and breeding organ of Ligusticum chuanxiong, a well-known medicinal herb. In order to understand the molecular mechanism of rhizome formation and development, and the biosynthesis of active metabolites in rhizome of L. chuanxiong, it was necessary to obtain the functional genomic information. In this study, two cDNA libraries, which were constructed from the rhizome and leaf of L. chuanxiong, were sequenced using Illumina platform. More than 26,540,629 high-quality reads were obtained, generating 5.36 gigabase pairs of sequencing data. These reads were assembled into 109,486 unigenes and more than 44,345 unigenes (>40 %) were larger than 500 bp. Among them, 67,373 unique sequences were annotated and 14,494 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. A total of 4102 unigenes were differentially expressed between rhizome and leaf, indicating their different roles in physiological processes. 2677 and 1425 unigenes were up-regulated in rhizome and leaf, respectively. In total, 82 and 124 transcriptional factor genes were up-regulated in rhizome and leaf, respectively. Meanwhile, 22 unigenes, which were involved with the organ formation and development, were discovered in the up-regulated unigenes in rhizome. Analysis of unigenes which were involved in the biosynthesis of ferulic acid indicated that Caffeic acid O-methyltransferase might be the candidate gene of the key enzyme. In conclusion, the extensive transcriptome provided a useful resource for the L. chuanxiong research. Using comparative transcriptome analysis, we detected differently expressing genes and identified a group of potential candidate unigenes by qRT-PCR. These candidate unigenes provide a foundation for future studies on molecular mechanisms underlying formation, development, and secondary metabolism of rhizome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ambawat S, Sharma P, Yadav NR, Yadav RC (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Molec Biol Pl 19:307–321. doi:10.1007/s12298-013-0179-1

    Article  CAS  Google Scholar 

  • Bakshi M, Oelmuller R (2014) WRKY transcription factors: jack of many trades in plants. Pl Signaling Behav 9:e27700. doi:10.4161/psb.27700

    Article  CAS  Google Scholar 

  • Cai Q, Liang L, Huang YP, Hou SX (2007) In vitro evaluation of self-emulsifying drug delivery system of volatile oil from rhizome of Ligusticum chuanxiong. China J Chin Mater Med 32:2003–2007

    CAS  Google Scholar 

  • Chen XP, Li W, Xiao XF, Zhang LL, Liu CX (2013) Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin J Nat Med 11:577–587. doi:10.1016/S1875-5364(13)60067-9

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676. doi:10.1093/bioinformatics/bti610

    Article  CAS  PubMed  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804. doi:10.1038/ng.144

    Article  CAS  PubMed  Google Scholar 

  • Daurelio LD, Romero MS, Petrocelli S, Merelo P, Cortadi AA, Talón M, Tadeo FR, Orellano EG (2013) Characterization of Citrus sinensis transcription factors closely associated with the non-host response to Xanthomonas campestris pv. vesicatoria. J Pl Physiol 170:934–942. doi:10.1016/j.jplph.2013.01.011

    Article  CAS  Google Scholar 

  • Dietz KJ, Vogel MO, Viehhauser A (2010) AP2/EREBP transcription factors are part of gene regulatory networks and integrate metabolic, hormonal and environmental signals in stress acclimation and retrograde signalling. Protoplasma 245:3–14. doi:10.1007/s00709-010-0142-8

    Article  CAS  PubMed  Google Scholar 

  • Edwards KD, Anderson PE, Hall A, Salathia NS, Locke JC, Lynn JR, Straume M, Smith JQ, Millar AJ (2006) Flowering locus C mediates natural variation in the high-temperature response of the Arabidopsis circadian clock. Pl Cell 18:639–650. doi:10.1105/tpc.105.038315

    Article  CAS  Google Scholar 

  • Friedemann T, Otto B, Klätschke K, Schumacher U, Tao Y, Leung AK, Efferth T, Schröder S (2014) Coptis Chinensis Franch. Exhibits neuroprotective properties against oxidative stress in human neuroblastoma cells. J Ethnopharmacol 155:607–615. doi:10.1016/j.jep.2014.06.004

    Article  PubMed  Google Scholar 

  • Fu N, Wang Q, Shen HL (2013) De novo assembly, gene annotation and marker development using Illumina paired-end transcriptome sequences in celery (Apium graveolens L.). PLoS ONE 8:e57686. doi:10.1371/journal.pone.0057686

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Jhanwar S, Priya P, Bhattacharjee A, Yadav G, Bhatia S, Chattopadhyay D, Tyagi AK, Jain M (2011) Gene discovery and tissue-specific transcriptome analysis in chickpea with massively parallel pyrosequencing and web resource development. Pl Physiol 156:1661–1678. doi:10.1104/pp.111.178616

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652. doi:10.1038/nbt.1883

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu Z, Gallo SM (2010) Identification of interacting transcription factors regulating tissue gene expression in human. BMC Genom 11:49. doi:10.1186/1471-2164-11-49

    Article  Google Scholar 

  • Hu Y, Li C, Shen W (2014) Gastrodin alleviates memory deficits and reduces neuropathology in a mouse model of Alzheimer’s disease. Neuropathology 34:370–377. doi:10.1111/neup.12115

    CAS  PubMed  Google Scholar 

  • Huang HH, Xu LL, Tong ZK, Lin EP, Liu QP, Cheng LJ, Zhu MY (2012) De novo characterization of the Chinese fir (Cunninghamia lanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis. BMC Genom 13:648. doi:10.1186/1471-2164-13-648

    Article  CAS  Google Scholar 

  • Iorizzo M, Senalik DA, Grzebelus D, Bowman M, Cavagnaro PF, Matvienko M, Ashrafi H, Van Deynze A, Simon PW (2011) De novo assembly and characterization of the carrot transcriptome reveals novel genes, new markers, and genetic diversity. BMC Genom 12:389. doi:10.1186/1471-2164-12-389

    Article  CAS  Google Scholar 

  • Jang CS, Kamps TL, Skinner DN, Schulze SR, Vencill WK, Paterson AH (2006) Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression. Pl Physiol 142:1148–1159. doi:10.1104/pp.106.082891

    Article  CAS  Google Scholar 

  • Kent WJ (2002) BLAT—the BLAST-like alignment tool. Genome Res 12:656–664. doi:10.1101/gr.229202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koo HJ, McDowell ET, Ma X, Greer KA, Kapteyn J, Xie Z, Descour A, Kim H, Yu Y, Kudrna D, Wing RA, Soderlund CA, Gang DR (2013) Ginger and turmeric expressed sequence tags identify signature genes for rhizome identity and development and the biosynthesis of curcuminoids, gingerols and terpenoids. BMC Pl Biol 13:27. doi:10.1186/1471-2229-13-27

    Article  CAS  Google Scholar 

  • Kuijt SJ, Greco R, Agalou A, Shao J, ‘t Hoen CC, Overnäs E, Osnato M, Curiale S, Meynard D, van Gulik R, de Faria Maraschin S, Atallah M, de Kam RJ, Lamers GE, Guiderdoni E, Rossini L, Meijer AH, Ouwerkerk PB (2014) Interaction between the growth-regulating factor and notted1-like homeobox families of transcription factors. Pl Physiol 164:1952–1966. doi:10.1104/pp.113.222836

    Article  CAS  Google Scholar 

  • Lee JE, Vogt T, Hause B, Löbler M (1997) Methyl jasmonate induces an O-methyltransferase in barley. Pl Cell Physiol 38:851–862

    Article  CAS  Google Scholar 

  • Li W, Tang Y, Chen Y, Duan JA (2012) Advances in the chemical analysis and biological activities of Chuanxiong. Molecules 17:10614–10651. doi:10.3390/molecules170910614

    Article  CAS  PubMed  Google Scholar 

  • Li CM, Guo YQ, Dong XL, Li H, Wang B, Wu JH, Wong MS, Chan SW (2014a) Ethanolic extract of rhizome of Ligusticum chuanxiong Hort. (chuanxiong) enhances endothelium-dependent vascular reactivity in ovariectomized rats fed with high-fat diet. Food Function 5:2475–2485. doi:10.1039/c4fo00211c

    Article  CAS  PubMed  Google Scholar 

  • Li MY, Tan HW, Wang F, Jiang Q, Xu ZS, Tian C, Xiong AS (2014b) De novo transcriptome sequence assembly and identification of AP2/ERF transcription factor related to abiotic stress in parsley (Petroselinum crispum). PLoS ONE 9:e108977. doi:10.1371/journal.pone.0108977

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu Z, Song T, Zhu Q, Wang W, Zhou J, Liao H (2014) De novo assembly and analysis of Cassia obtusifolia seed transcriptome to identify genes involved in the biosynthesis of active metabolites. Biosci Biotechnol Biochem 78:791–799. doi:10.1080/09168451.2014.905182

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Louie GV, Bowman ME, Tu Y, Mouradov A, Spangenberg G, Noel JP (2010) Structure-function analyses of a caffeic acid O-methyltransferase from perennial ryegrass reveal the molecular basis for substrate preference. Pl Cell 22:4114–4127. doi:10.1105/tpc.110.077578

    Article  CAS  Google Scholar 

  • Lu J, Li C, Zhang FS, Wu W, Zhang QF, Zhang L, Wang T, Wang Q, Qiu PH, Liang MF, Li DX (2011) Expression of structural and non-structural proteins of severe fever with thrombocytopenia syndrome bunyavirus. Chin J Virol 27:515–520

    Google Scholar 

  • Lv GH, Cheng SQ, Chan K, Leung KSY, Zhao ZZ (2010) Determination of free ferulic acid and total ferulic acid in Chuanxiong by high-performance liquid chromatography for quality assessment. China J Chin Mater Med 35:194–198

    Google Scholar 

  • Mancuso C, Santangelo R (2014) Ferulic acid: pharmacological and toxicological aspects. Food Chem Toxicol 65:185–195. doi:10.1016/j.fct.2013.12.024

    Article  CAS  PubMed  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. doi:10.1038/nmeth.1226

    Article  CAS  PubMed  Google Scholar 

  • Ono NN, Britton MT, Fass JN, Nicolet CM, Lin D, Tian L (2011) Exploring the transcriptome landscape of pomegranate fruit peel for natural product biosynthetic gene and SSR marker discovery. J Integr Pl Biol 53:800–813. doi:10.1111/j.1744-7909.2011.01073.x

    Article  CAS  Google Scholar 

  • Parapunova V, Busscher M, Busscher-Lange J, Lammers M, Karlova R, Bovy AG, Angenent GC, de Maagd RA (2014) Identification, cloning and characterization of the tomato TCP transcription factor family. BMC Pl Biol 14:157. doi:10.1186/1471-2229-14-157

    Article  Google Scholar 

  • Poethig RS (2013) Vegetative phase change and shoot maturation in plants. Curr Topics Developm Biol 105:125–152. doi:10.1016/B978-0-12-396968-2.00005-1

    Article  CAS  Google Scholar 

  • Qiu WM, Zhu AD, Wang Y, Chai LJ, Ge XX, Deng XX, Guo WW (2012) Comparative transcript profiling of gene expression between seedless Ponkan mandarin and its seedy wild type during floral organ development by suppression subtractive hybridization and cDNA microarray. BMC Genom 13:397. doi:10.1186/1471-2164-13-397

    Article  CAS  Google Scholar 

  • Romualdi C, Bortoluzzi S, D’Alessi F, Danieli GA (2003) IDEG6: a web tool for detection of differentially expressed genes in multiple tag sampling experiments. Physiol Genomics 12:159–162

    Article  CAS  PubMed  Google Scholar 

  • Shi CY, Yang H, Wei CL, Yu O, Zhang ZZ, Jiang CJ, Sun J, Li YY, Chen Q, Xia T, Wan XC (2011) Deep sequencing of the Camellia sinensis transcriptome revealed candidate genes for major metabolic pathways of tea-specific compounds. BMC Genom 12:131. doi:10.1186/1471-2164-12-131

    Article  CAS  Google Scholar 

  • Song XM, Huang ZN, Duan WK, Ren J, Liu TK, Li Y, Hou XL (2014) Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp. pekinensis). Molec Genet Genomics 289:77–91. doi:10.1007/s00438-013-0791-3

    Article  CAS  Google Scholar 

  • Sui Y, He W, Pan X, Dong M (2011) Partial mechanical stimulation facilitates the growth of the rhizomatous plant Leymus secalinus: modulation by clonal integration. Ann Bot (Oxford) 107:693–697. doi:10.1093/aob/mcr012

    Article  CAS  Google Scholar 

  • Tang Q, Ma X, Mo C, Wilson IW, Song C, Zhao H, Yang Y, Fu W, Qiu D (2011) An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. BMC Genom 12:343. doi:10.1186/1471-2164-12-343

    Article  CAS  Google Scholar 

  • Toquin V, Grausem B, Geoffroy P, Legrand M (2003) Structure of the tobacco caffeic acid O-methyltransferase (COMT) II gene: identification of promoter sequences involved in gene inducibility by various stimuli. Pl Molec Biol 52:495–509

    Article  CAS  Google Scholar 

  • Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W (2012) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000. doi:10.1111/j.1469-8137.2012.04337.x

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Zhang Y, Li X, Tong Y, Kong H, Xu G (2010) Analysis of volatile oils of Ligusticum chuanxiong Hort. from different geographical origins by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry. Chin J Chromatogr 28:329–335

    Article  CAS  Google Scholar 

  • Wang JR, Yau LF, Gao W, Liu Y, Yick PW, Liu L, Jiang ZH (2014) Quantitative comparison and metabolite profiling of saponins in different parts of the root of Panax notoginseng. J Agric Food Chem 62:9024–9034. doi:10.1021/jf502214x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu Q, Yang XW (2008) GC-MS analysis of essential oil from rhizomes of Ligusticum chuanxiong cultivated in GAP base for Chinese medicinal materials of China. China J Chin Mater Med 33:276–280

    CAS  Google Scholar 

  • Xie XL, Shen SL, Yin XR, Xu Q, Sun CD, Grierson D, Ferguson I, Chen KS (2014) Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus. Molec Biol Rep 41:4261–4271. doi:10.1007/s11033-014-3297-0

    Article  CAS  Google Scholar 

  • Xu B, Gou JY, Li FG, Shangguan XX, Zhao B, Yang CQ, Wang LJ, Yuan S, Liu CJ, Chen XY (2013) A cotton BURP domain protein interacts with α-expansin and their co-expression promotes plant growth and fruit production. Molec Pl 6:945–958. doi:10.1093/mp/sss112

    Article  CAS  Google Scholar 

  • Yao Z, Du S, Lu Y, Xu B, Chen X (2010) Simultaneous determination of five effective components in Rhizoma Chuanxiong by RP-HPLC. China J Chin Mater Med 35:2696–2699

    CAS  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L, Wang J (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:w293–w297. doi:10.1093/nar/gkl031

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshihara N, Fukuchi-Mizutanib M, Okuharab H, Tanaka Y, Yabuya T (2008) Molecular cloning and characterization of O-methyltransferases from the flower buds of Iris hollandica. J Pl Physiol 165:415–422. doi:10.1016/j.jplph.2006.12.002

    Article  CAS  Google Scholar 

  • Zhang H, Ran X, Hu CL, Qin LP, Lu Y, Peng C (2012) Therapeutic effects of liposome-enveloped Ligusticum chuanxiong essential oil on hypertrophic scars in the rabbit ear model. PLoS ONE 7(2):e31157. doi:10.1371/journal.pone.0031157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang T, Zhao X, Wang W, Huang L, Liu X, Zong Y, Zhu L, Yang D, Fu B, Li Z (2014) Deep transcriptome sequencing of rhizome and aerial-shoot in Sorghum propinquum. Pl Molec Biol 84:315–327. doi:10.1007/s11103-013-0135-z

    Article  CAS  Google Scholar 

  • Zhou J, Qu F, Yu Y (2011) Chemical and ecological evaluation of a genuine Chinese medicine: atractylodes macrocephala Koidz. Afr J Tradit Complement Altern Med 8:405–411

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Grant (No. 31371232) from National Natural Science Foundation of China and National Science and Technology Major Project (2014ZX09304307001-019).

Conflict of interest

We declare that we have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia-yu Zhou or Hai Liao.

Additional information

Handling editor: Christian Parisod.

Please see the full name of the abbreviation in Online Resource 1.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, T., Liu, ZB., Li, JJ. et al. Comparative transcriptome of rhizome and leaf in Ligusticum Chuanxiong . Plant Syst Evol 301, 2073–2085 (2015). https://doi.org/10.1007/s00606-015-1211-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1211-4

Keywords

Navigation