Skip to main content
Log in

Genome size in aquatic and wetland plants: fitting with the large genome constraint hypothesis with a few relevant exceptions

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Genome size was assessed by flow cytometry in 55 populations of 53 taxa with different kinds of relationship with freshwater environments (25 populations of aquatic plants, 24 of wetland plants and six occurring both in aquatic and wetland habitats). Nuclear DNA content is provided for the first time for one family, five genera, 28 species, four subspecies and one variety. Around three quarters of the results obtained belong to the lowest levels of nuclear DNA content (very small and small values), which agrees with the large genome constraint hypothesis. Nevertheless, some remarkably high values were also found. Further studies would still be required to increase the set of water-dependent plants with known nuclear DNA amount in view of clearly establishing any relationship between genome size and aquatic habitat. A synthesis of the current knowledge on genome size in water-dependent angiosperms shows a distribution of C-values biased towards very small genomes, a tendency especially strong in wetland plants, where species of 2C < 1 pg are four times more frequent than in angiosperms as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot (Oxford) 94:897–911

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc Roy Soc London ser B Biol Sci 181:109–135

    Article  CAS  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and ecological implications. New Phytol 106(Suppl 1):177–200

    Google Scholar 

  • Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot (Oxford) 76:113–176

    Article  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Nuclear DNA amounts in angiosperms: progress, problems, prospects. Ann Bot (Oxford) 95:45–90

    Article  CAS  Google Scholar 

  • Bolòs O de, Vigo J, Masalles RM, Ninot JM (2005) Flora manual dels Països Catalans, 3rd edn. Editorial Pòrtic, Barcelona

    Google Scholar 

  • Bou Dagher-Kharrat M, Abdel-Samad N, Douaihy B, Bourge M, Fridlender A, Siljak-Yakovlev S, Brown SC (2013) Nuclear DNA C-values for biodiversity screening: case of the Lebanese flora. Pl Biosystems 147:1228–1237

    Article  Google Scholar 

  • Cavallini A, Natali L, Giordani T, Polizzi E, Balestri E, Cinelli F, Maserti BE, Ferrara R (1995) Cytophotometric and biochemical characterization of Posidonia oceanica L. (Potamogetonaceae) genome. Caryologia 48:201–209

    Article  Google Scholar 

  • Ceccarelli M, Sarri V, Minelli S, Gelati MT (2008) Characterization of two families of tandem repeated DNA sequences in Potamogeton pectinatus L. Genome 51:871–877

    Article  CAS  PubMed  Google Scholar 

  • Cronk JK, Fennessy MS (2001) Wetland plants: biology and ecology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Dolenc Koce J, Vilhar B, Bohanec B, Dermastia M (2003) Genome size of Adriatic seagrasses. Aquatic Bot 77:17–25

    Article  Google Scholar 

  • Dolenc Koce J, Škondrić S, Bačič T, Dermastia M (2008) Amounts of nuclear DNA of marine halophytes. Aquatic Bot 89:385–389

    Article  Google Scholar 

  • Doležel J (1991) Flow cytometric analysis of nuclear DNA content in higher plants. Phytochem Anal 2:143–154

    Article  Google Scholar 

  • Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Pl 31:113–120

    Article  Google Scholar 

  • Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51:127–128

    Article  PubMed  Google Scholar 

  • Ekim T, Koyuncu M, Vural H, Duman H, Aytac Z, Adiguzel N (2000) Turkiye bitkileri kırmızı kitabi (egrelti ve tohumlu bitkiler) / Red Data Book of Turkish Plants (Pteridophyta and Spermatophyta). Turkish Association for the Conservation of Nature and Van Centennial University, Ankara

  • Garcia S, Canela MÁ, Garnatje T, McArthur ED, Pellicer J, Sanderson SC, Vallès J (2008) Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biol J Linn Soc 94:631–649

    Article  Google Scholar 

  • García-Fernández A, Iriondo JM, Vallès J, Orellana J, Escudero A (2012) Ploidy level and genome size of locally adapted populations of Silene ciliata across an altitudinal gradient. Pl Syst Evol 298:139–146

    Article  Google Scholar 

  • Garnatje T, Vallès J, Garcia S, Hidalgo O, Sanz M, Canela MÁ, Siljak-Yakovlev S (2004) Genome size in Echinops L. and related genera (Asteraceae, Cardueae): karyological, ecological and phylogenetic implications. Biol Cell 96:117–124

    Article  CAS  PubMed  Google Scholar 

  • Goin OB, Goin CJ, Bachmann K (1968) DNA and amphibian life history. Copeia 3:532–540

    Article  Google Scholar 

  • Gregory TR (2005) The C-value enigma in plants and animals: a review of parallels and an appeal for partnership. Ann Bot (Oxford) 95:133–146

    Article  CAS  Google Scholar 

  • Greilhuber J, Doležel J, Lysák MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘Genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot (Oxford) 95:255–260

    Article  CAS  Google Scholar 

  • Greilhuber J, Borsch T, Müller K, Worberg A, Porembski S, Barthlott W (2006) Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Pl Biol (Stuttgart) 8:770–777

    Article  CAS  Google Scholar 

  • Grime JP, Mowforth MA (1982) Variation in genome size—an ecological interpretation. Nature 299:151–153

    Article  Google Scholar 

  • Hamann E, Puijalon S (2013) Biomechanical responses of aquatic plants to aerial conditions. Ann Bot (Oxford) 112:1869–1878

    Article  Google Scholar 

  • Hidalgo O, Vallès J (2012) First record of a natural hexaploid population for Valeriana officinalis: genome size is confirmed to be a suitable indicator of ploidy level in the species. Caryologia 65:243–245

    Article  Google Scholar 

  • Kaur N, Datson PM, Murray BG (2012) Genome size and chromosome number in the New Zealand species of Schoenus (Cyperaceae). Bot J Linn Soc 169:555–564

    Article  Google Scholar 

  • Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot (Oxford) 95:177–190

    Article  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (embryophyta). Ann Bot (Oxford) 95:207–217

    Article  CAS  Google Scholar 

  • Lepers-Andrzejewski S, Siljak-Yakovlev S, Brown SC, Wong M, Dron M (2011) Diversity and dynamics of plant genome size: an example of polysomaty from a cytogenetic study of Tahitian vanilla (Vanilla xtahitensis, Orchidaceae). Amer J Bot 98:986–997

    Article  Google Scholar 

  • Les DH, Philbrick CT (1993) Studies of hybridization and chromosome number variation in aquatic angiosperms: evolutionary implications. Aquatic Bot 44:181–228

    Article  Google Scholar 

  • Margalef R (1983) Limnología. Editorial Omega, Barcelona

    Google Scholar 

  • Marie D, Brown SC (1993) A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  CAS  PubMed  Google Scholar 

  • Morozowska M, Czarna A, Jędrzejczyk I (2010) Estimation of nuclear DNA content in Nasturtium R. Br. by flow cytometry. Aquatic Bot 93:250–253

    Article  Google Scholar 

  • Oropeza A, Palomino G, Novelo A, Philbrick CT (2002) Karyomorphological studies in Oserya, Vanroyenella and Tristicha (Podostemaceae sensu lato). Aquatic Bot 73:163–171

    Article  Google Scholar 

  • Pellicer J, Fay MF, Leitch IJ (2010a) The largest eukaryotic genome of them all? Bot J Linn Soc 164:10–15

    Article  Google Scholar 

  • Pellicer J, Garcia S, Canela MÁ, Garnatje T, Korobkov AA, Twibell JD, Vallès J (2010b) Genome size dynamics in Artemisia L. (Asteraceae): following the track of polyploidy. Pl Biol (Stuttgart) 12:820–830

    Article  CAS  Google Scholar 

  • Pellicer J, Kelly LJ, Magdalena C, Leitch IJ (2013) Insights into the dynamics of genome size and chromosome evolution in the early diverging angiosperm lineage Nymphaeales (water lilies). Genome 56:1–13

    Article  Google Scholar 

  • Pijnacker LP, Schotsman HD (1988) Nuclear DNA amounts in European Callitriche species (Callitrichaceae). Acta Bot Neerl 37:129–135

    Article  Google Scholar 

  • Pustahija F, Brown SC, Bogunić F, Bašić N, Muratović E, Ollier S, Hidalgo O, Bourge M, Stevanović V, Siljak-Yakovlev S (2013) Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Pl Soil 373:427–453

    Article  CAS  Google Scholar 

  • Rayburn AL, Auger JA (1990) Genome size variation in Zea mays ssp. mays adapted to various altitudes. Theor Appl Genet 79:470–474

    Article  CAS  PubMed  Google Scholar 

  • Sáez L, Aymerich P, Blanché C (2010) Llibre vermell de les plantes vasculars endèmiques i amenaçades de catalunya. Argania Editio, Barcelona

  • Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss A, Brochmann C (2007) Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molec Phylogen Evol 42:92–103

    Article  Google Scholar 

  • Siljak-Yakovlev S, Pustahija F, Šolić D, Bogunić F, Muratović E, Bašić N, Catrice O, Brown S (2010) Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Sci Lett 3:190–213

    Article  CAS  Google Scholar 

  • Suda J, Kron P, Husband BC, Trávníček P (2007) Flow cytometry and ploidy: applications in plant systematics, ecology and evolutionary biology. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Darmstadt, pp 103–130

    Chapter  Google Scholar 

  • Swift H (1950) The constancy of deoxyribose nucleic acid in plant nuclei. Proc Natl Acad Sci USA 36:643–654

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vallès J, Garcia S, Hidalgo O, Martín J, Pellicer J, Sanz M, Garnatje T (2011) Biology, genome evolution, biotechnological issues, and research including applied perspectives in Artemisia (Asteraceae). Advances Bot Res 60:349–419

    Article  Google Scholar 

  • Vallès J, Canela MÁ, Garcia S, Hidalgo O, Pellicer J, Sánchez-Jiménez I, Siljak-Yakovlev S, Vitales D, Garnatje T (2013) Genome size variation and evolution in the family Asteraceae. Caryologia 66:221–235

    Article  Google Scholar 

  • Wang W, Kerstetter RA, Michael TP (2011) Evolution of genome size in duckweeds (Lemnaceae). J Bot (Hindawi) vol 2011, article ID 570319, p 9

Download references

Acknowledgments

This work was supported by the Dirección General de Investigación Científica y Técnica, Spanish government (CGL2010-22234-C02-01/BOS, CGL2010-22234-C02-02/BOS, CGL2013-49097-C2-2-P) and the Generalitat de Catalunya, Catalonian government (“Ajuts a grups de recerca consolidats”, 2009SGR439, 2014SGR514). O. H. and S. G. benefited from Juan de la Cierva postdoctoral contracts of the Ministry of Economy and Competitiveness, Spanish government. Pere Barnola, Joan Font, Samuel Pyke and Josep Vicens are thanked for help in plant collection and/or determination and/or management, Ricard Àlvarez, Jaume Comas, Chari González and Sonia Ruiz for their assistance in flow cytometric analyses, and Samuel Pyke for the English text revision. Two anonymous reviewers and the editor-in-chief Karol Marhold are thanked for their comments, which improved the manuscript.

Conflict of interest

The authors declare that they do not have any conflict of interests regarding the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Vallès.

Additional information

Handling editor: Karol Marhold.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Supplementary material 2 (DOCX 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidalgo, O., Garcia, S., Garnatje, T. et al. Genome size in aquatic and wetland plants: fitting with the large genome constraint hypothesis with a few relevant exceptions. Plant Syst Evol 301, 1927–1936 (2015). https://doi.org/10.1007/s00606-015-1205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-015-1205-2

Keywords

Navigation