Skip to main content
Log in

High genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In this study we compared population structure, genetic diversity and fine-scale spatial genetic structure (SGS) in four Bignoniaceae tree species, Handroanthus chrysotrichus, H. impetiginosus, Tabebuia roseoalba and H. serratifolius in a remnant of seasonally dry tropical forest in Central-West Brazil, based on polymorphisms at six microsatellite loci. All species, except T. roseoalba, presented the inverted ‘J’ population structure indicating recruitment of juveniles. Juveniles presented a clumped distribution suggesting limitation in dispersal or patchy distribution of suitable microhabitat for recruitment. All species showed high levels of polymorphism and genetic diversity but without a clear pattern of distribution among life stages. The SGS was significant for all species, except T. roseoalba, but the pattern and strength of the spatial genetic structure differed among species. Handroanthus serratifolius had stronger SGS with significant kinship until 77 m. For H. impetiginosus and H. chrysotrichus, kinship was significant just until 23 and 6 m, respectively. Despite the high genetic diversity, all species showed low number of adults and high fixation indices suggesting that habitat fragmentation and disturbance have been affecting these populations in Central-West Brazil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Berec L, Angulo E, Courchamp F (2007) Multiple Allee effects and population management. Trends Ecol Evol 22:185–191

    Article  PubMed  Google Scholar 

  • Bijlsma R, Loeschcke V (2012) Genetic erosion impedes adaptive responses to stressful environments. Evol Appl 5:117–129

    Article  PubMed Central  Google Scholar 

  • Bittencourt NS Jr, Semir J (2005) Late-acting self-incompatibility and other breeding systems in Tabebuia (Bignoniaceae). Int J Plant Sci 166:493–506

    Article  Google Scholar 

  • Born C, Hardy OJ, Chevallier MH, Ossari S, Attéké C, Wickings EJ, Hossaert-Mckey M (2008) Small-scale spatial genetic structure in the Central African rainforest tree species Aucoumea klaineana: a stepwise approach to infer the impact of limited gene dispersal, population history and habitat fragmentation. Mol Ecol 17:2041–2050

    Article  PubMed  Google Scholar 

  • Braga AC, Collevatti RG (2011) Temporal variation in pollen dispersal and breeding structure in a bee-pollinated Neotropical tree. Heredity 106:911–919

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braga AC, Reis AMM, Leoi LT, Pereira RW, Collevatti RG (2007) Development and characterization of microsatellite markers for the tropical tree species Tabebuia aurea (Bignoniaceae). Mol Ecol 7:53–56

    Article  CAS  Google Scholar 

  • Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113

    Article  CAS  PubMed  Google Scholar 

  • Collevatti RG, Hay JD (2011) Kin structure and genotype-dependent mortality: a study using the Neotropical tree Caryocar brasiliense. J Ecol 99:757–763

    Article  Google Scholar 

  • Collevatti RG, Grattapaglia D, Hay JD (2001) Population genetic structure of the endangered tropical tree species Caryocar brasiliense, based on variability at microsatellite loci. Mol Ecol 10:349–356

    Article  CAS  PubMed  Google Scholar 

  • Collevatti RG, Lima JS, Soares TN, Telles MPC (2010) Spatial genetic structure and life history traits in cerrado tree species: inferences for conservation. Nat Conserv 8:54–59

    Article  Google Scholar 

  • Crawley MJ, Ross GJS (1990) The population dynamics of plants. Phil Transac R Soc B 330:125–140

    Article  Google Scholar 

  • Diggle PJ (1983) Statistical analysis of spatial point patterns. Academic Press, New York

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Felfili JM (2003) Fragmentos de florestas estacionais do Brasil Central: diagnóstico e proposta de corredores ecológicos. In Fragmentação florestal e alternativas de desenvolvimento rural na Região Centro-Oeste (R.B. Costa, org.). Universidade Católica Dom Bosco, Campo Grande, p.139–160

  • Frankham R (2003) Genetics and conservation biology. C R Biol 326:S22–S29

    Article  PubMed  Google Scholar 

  • Furley PA, Ratter JA (1988) Soil resources and plant communities of the central Brazilian cerrado and their development. J Biogeog 15:97–108

    Article  Google Scholar 

  • Gaino APSC, Silva AM, Moraes MA, Alves PF, Moraes MLT, Freitas MLM, Sebbenn AM (2010) Understanding the effects of isolation on seed and pollen flow, spatial genetic structure and effective population size of the dioecious tropical tree species Myracrodruon urundeuva. Cons Genet 11:1631–1643

    Article  Google Scholar 

  • Getzin S, Wiegand T, Wiegand K, He F (2008) Heterogeneity influences spatial patterns and demographics in forest stands. J Ecol 96:807–820

    Article  Google Scholar 

  • Ghazoul J (2005) Pollen and seed dispersal among dispersed plants. Biol Rev 80:413–443

    Article  PubMed  Google Scholar 

  • Gignoux J, Duby C, Barot S (1999) Comparing the performances of Diggle’s tests of spatial randomness for small samples with and without edge-effect correction: application to ecological data. Biometrics 55:156–164

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3.2). http://www.unil.ch/izea/softwares/fstat.html. Accessed 18 March 2013

  • Goudet J, Raymond M, de-Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic Press, London

    Google Scholar 

  • Horn HS, Nathan R, Kaplan SR (2001) Long-distance dispersal of tree seeds by wind. Ecol Res 16:877–885

    Article  Google Scholar 

  • Hubbell SP, Condit R, Foster RB, Grubb PJ, Thomas CD (1990) Presence and absence of density dependence in a Neotropical tree community. Phil Tran R Soc B 330:269–281

    Article  Google Scholar 

  • Jones FA, Hubbell SP (2006) Demographic spatial genetic structure of the Neotropical tree, Jacaranda copaia. Mol Ecol 15:3205–3217

    Article  CAS  PubMed  Google Scholar 

  • Jones FA, Chen J, Weng GJ, Hubbell SP (2005) A genetic evaluation of seed dispersal in the Neotropical tree Jacaranda copaia (Bignoniaceae). Am Nat 166:543–555

    Article  CAS  PubMed  Google Scholar 

  • Latouche-Halle C, Ramboer A, Bandou E, Caron H, Kremer A (2003) Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a Neotropical tree population. Heredity 91:181–190

    Article  CAS  PubMed  Google Scholar 

  • Lemes M, Gribel R, Proctor J, Grattapaglia D (2003) Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: implications for conservation. Mol Ecol 12:2875–2883

    Article  PubMed  Google Scholar 

  • Loiselle BA, Sork VL, Nason JD, Graham C (1995) Genetic structure of a tropical understorey shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425

    Article  Google Scholar 

  • Luo Z, Mi X, Chen X, Ye Z, Ding B (2012) Density dependence is not very prevalent in a heterogeneous subtropical forest. Oikos 121:1239–1250

    Article  Google Scholar 

  • Miles L, Newton AC, DeFries RS, Ravilious C, May I, Blyth S, Kapos V, Gordon JE (2006) A global overview of the conservation status of tropical dry forests. J Biogeogr 33:491–505

    Article  Google Scholar 

  • Moreira PA, Fernandes GW, Collevatti RG (2009) Fragmentation and spatial genetic structure in Tabebuia ochracea (Bignoniaceae) a seasonally dry Neotropical tree. For Ecol Manag 258:2690–2695

    Article  Google Scholar 

  • Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Nason JD, Hamrick JL (1997) Reproductive and genetic consequences of forest fragmentation: two case studies of Neotropical canopy trees. J Hered 88:264–276

    Article  Google Scholar 

  • Nason JD, Aldrich PR, Hamrick JL (1997) Dispersal and the dynamics of genetic structure in fragmented tropical tree populations. In: Laurance WF, Bierregaard RO (eds) Tropical forest remnants. The University of Chicago Press, Chicago, pp 304–320

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho AT (2009) Woody plant diversity, evolution and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457

    Article  Google Scholar 

  • Pereira R Jr, Zweedea J, Asnerb GP, Keller M (2001) Forest canopy damage and recovery in reduced-impact and conventional selective logging in eastern Para, Brazil. For Ecol Manag 5778:1–13

    Google Scholar 

  • Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for Spatial Analysis in Macroecology. Ecography 33:46–50

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Ripley BD (1981) Spatial statistics. Wiley, New York

    Book  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schulze M, Grogan J, Uhi C, Lentini M, Vidal E (2008) Evaluating ipê (Tabebuia, Bignoniaceae) logging in Amazonia: sustainable management or catalyst for forest degradation? Biol Conserv 141:2071–2085

    Article  Google Scholar 

  • Sebbenn AM, Carvalho ACM, Freitas MLM, Moraes SMB, Gaino APSC, Silva JM, Jolivet C, Moraes MLT (2011) Low levels of realized seed and pollen gene flow and strong spatial genetic structure in a small, isolated and fragmented population of the tropical tree Copaifera langsdorffii Desf. Heredity 106:134–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Semarh, Secretaria de Meio Ambiente e Recursos Hídricos do Estado de Goiás (2005) Inventário da Flora do Parque Ecológico Altamiro de Moura Pacheco e Parque dos Ipês. Goiânia, GO

  • Silva JF, Fariñas MR, Felfili JM, Klink CA (2006) Spatial heterogeneity, land use and conservation in the Cerrado region of Brazil. J Biogeogr 33:536–548

    Article  Google Scholar 

  • Tackenberg O, Poschlod P, Bonn S (2003) Assessment of wind dispersal potential in plant species. Ecol Monogr 73:191–205

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analysis in plant populations. Mol Ecol 13:921–935

    Article  CAS  PubMed  Google Scholar 

  • Vieira DLM, Scariot A (2008) Environmental variables and tree population structures in deciduous forests of Central Brazil with different levels of logging. Braz Arch Biol Technol 51:419–431

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall Inc, New Jersey

    Google Scholar 

Download references

Acknowledgments

This work was supported by a competitive grant from CNPq to RGC (project no. 471366/2007-2), CAPES/PNADB N°17/2009 and PRONEX CNPq/FAPEG/AUX PESQ CH 007/2009. R.G.C. has continuously been supported by CNPq (Brazilian Ministry of Science and Technology) grants and scholarships whose assistance we gratefully acknowledge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosane Garcia Collevatti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 68 kb)

Supplementary material 2 (DOC 125 kb)

606_2014_993_MOESM3_ESM.pdf

Fig. S1 Spatial cluster analysis for four seasonally dry tropical forest tree species in a reserve in Central Brazil, based on Ripley’s K-function (overall individuals) and Diggle’s G-function (for size stages). Distance in meters. Black thick line, observed values; thin line, expected values for random distribution; light grey area, confidence interval (95 %) (PDF 157 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collevatti, R.G., Estolano, R., Ribeiro, M.L. et al. High genetic diversity and contrasting fine-scale spatial genetic structure in four seasonally dry tropical forest tree species. Plant Syst Evol 300, 1671–1681 (2014). https://doi.org/10.1007/s00606-014-0993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-0993-0

Keywords

Navigation