Skip to main content
Log in

Morphology versus molecules in moss phylogeny: new insights (or controversies) from placental and vascular anatomy in Oedipodium griffithianum

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

New data on the placenta and water-conducting cells of Oedipodium griffithianum challenge current ideas on moss phylogeny. The placental region in O. griffithianum consists of cells with highly convolute wall labyrinths on both the sporophytic and gametophytic side. This type of placenta distinguishes an assemblage of mosses including Tetraphis, Buxbaumia and all arthrodontous mosses but is not found in basal lineages including polytrichopsid mosses. Other features that distinguish Oedipodium from polytrichopsid mosses are the foot entirely ensheathed by the parenchymatous tissue of the gametophyte vaginula, the lack of a necrotic foot tip, the lack of intercellular spaces in the foot parenchyma and the presence of typical bryopsid hydroids with uniformly thin cell walls in the leafy shoot. These results do not support molecular phylogenies resolving Oedipodium as the sister group to polytrichopsid mosses or to all peristomate mosses, but are compatible with a sister relationship to a clade encompassing Tetraphis, Buxbaumia and arthrodontous mosses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfayate C, Estébanez B, Ron E (2000) The sporophyte–gametophyte junction in five species of pleurocarpous mosses. Bryologist 103:467–474

    Article  Google Scholar 

  • Bell NE, Hyvönen J (2008) Rooting the Polytrichopsida: the phylogenetic position of Atrichopsis and the independent origin of the polytrichopsid peristome. In: Mohamed H, Baki BB, Nasrulhaq-Boyce A, Lee PKJ (eds) Bryology in the New Millenium. University of Malaya, Kuala Lumpur, pp 227–239

    Google Scholar 

  • Carafa A, Duckett JG, Ligrone R (2003) The placenta in Monoclea forsteri Hook and Treubia lacunosa (Col.) Prosk: insights into placental evolution in liverworts. Ann Bot 92:299–307

    Article  PubMed  CAS  Google Scholar 

  • Cox CJ, Goffinet B, Shaw J, Boles SB (2004) Phylogenetic relationships among the mosses based on heterogeneous bayesian analysis of multiple genes from multiple genomic comparments. Syst Bot 29:234–250

    Article  Google Scholar 

  • Cox CJ, Goffinet B, Wickett NJ, Boles SB, Shaw AJ (2010) Moss diversity: a molecular phylogenetic analysis of genera. Phytotaxa 9:175–195

    Google Scholar 

  • Crum HA (2007) Oedipodiaceae. In: Zander RH (ed) Flora of North America, vol 27. Missouri Botanical Gardens Press, St. Louis, Missouri, USA, pp 116–117

    Google Scholar 

  • Duckett JG, Ligrone R (2003) The structure and development of haustorial placentas in leptosporangiate ferns provide a clear-cut distinction between euphyllophytes and lycophytes. Ann Bot 92:513–521

    Article  PubMed  Google Scholar 

  • Forrest LL, Davis EC, Long DG, Crandall-Stotler BJ, Clark A, Hollingsworth ML (2006) Unraveling the evolutionary history of the liverworts (Marchantiophyta): multiple taxa, genomes and analyses. Bryologist 109:303–334

    Article  CAS  Google Scholar 

  • Frey W, Hofmann M, Hilger HH (2001) The gametophyte–sporophyte junction: unequivocal hints for two evolutionary lines of archegoniate land plants. Flora 196:431–445

    Google Scholar 

  • Frey W, Stech M, Fisher E (2009) Syllabus of Plant Families, Part 3, Bryophytes and seedless Vascular Plants. Gebrüder Borntraeger Verlagsbuchhandlung, Berlin

    Google Scholar 

  • Goffinet B, Buck W (2004) Systematics of the Bryophyta (mosses): from molecules to a revised classification. In: Goffinet B, Hollowell V, Magill R (eds) Molecular Systematics of Bryophytes. Missouri Botanical Gardens Press, St. Louis, MO, pp 205–239

    Google Scholar 

  • Goffinet B, Cox CJ, Shaw AJ, Hedderson TAJ (2001) The Bryophyta (mosses): systematic and evolutionary inferences from an rps4 gene (cpDNA) phylogeny. Ann Bot 87:191–208

    Article  CAS  Google Scholar 

  • Goffinet B, Wickett NJ, Shaw AJ, Cox CJ (2005) Phylogenetic significance of the rpoA loss in the chloroplast genome of mosses. Taxon 54:353–360

    Article  Google Scholar 

  • Goffinet B, Buck W, Shaw J (2009) Morphology, anatomy and classification of the Bryophyta. In: Goffinet B, Shaw J (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 55–138

    Google Scholar 

  • Heinrichs J, Gradstein SR, Wilson R, Schneider H (2005) Towards a natural classification of liverworts (Marchantiophyta) based on the chloroplast gene rbcL. Cryptog Bryol 26:131–150

    Google Scholar 

  • Hyvönen J, Hedderson TA, Smith Merryll GL, Gibbings JG, Koskinen S (1998) On phylogeny of the polytrichales. Bryologist 101:489–504

    Google Scholar 

  • Hyvönen J, Koskinen S, Smith Merryll GL, Hedderson TA, Stenroos S (2004) Phylogeny of the polytrichales (Bryophyta) based on simultaneous analysis of molecular and morphological data. Mol Phylog Evol 31:915–928

    Article  Google Scholar 

  • Ligrone R, Gambardella R (1988) The sporophyte–gametophyte junction in bryophytes. Adv Bryol 3:225–274

    Google Scholar 

  • Ligrone R, Gambardella R, Castaldo R, Giordano S, De Lucia Sposito ML (1982a) Gametophyte and sporophyte ultrastructure in Buxbaumia piperi Best (Buxbaumiales, Musci). J Hattori Bot Lab 52:465–499

    Google Scholar 

  • Ligrone R, Gambardella R, De Lucia Sposito ML (1982b) Ultrastructure of the sporophyte foot-gametophyte vaginula complex in Timmiella barbuloides (Brid.) Moenk. Planta 154:414–425

    Article  Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS (1993) The gametophyte–sporophyte junction in land plants. Adv Bot Res 19:231–317

    Article  Google Scholar 

  • Ligrone R, Duckett JG, Renzaglia KS (2000) Conducting tissues and phyletic relationships of bryophytes. Phil Trans R Soc London B 355:795–813

    Article  CAS  Google Scholar 

  • Ligrone R, Vaughn KC, Renzaglia KS, Knox JP, Duckett JG (2002) Diversity in the distribution of polysaccharide and glycoprotein epitopes in the cell walls of bryophytes: new evidence for multiple evolution of water-conducting cells. New Phytol 156:491–508

    Article  CAS  Google Scholar 

  • Magombo ZLK (2003) The phylogeny of basal peristomate mosses: evidence from cpDNA, and implications for peristome evolution. Syst Bot 28:24–38

    Google Scholar 

  • Newton AE, Cox CJ, Duckett JG, Wheeler JA, Goffinet B, Hedderson TAJ, Mishler BD (2000) Evolution of the major moss lineages: phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103:187–211

    Article  Google Scholar 

  • Qiu YL et al (2006) The deepest divergences in land plants inferred from phylogenomic evidence. PNAS 103:15511–15516

    Article  PubMed  CAS  Google Scholar 

  • Qiu YL et al (2007) A non-flowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int J Plant Sci 168:691–708

    Article  CAS  Google Scholar 

  • Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG (2007) Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110:179–213

    Article  Google Scholar 

  • Renzaglia KS, Villareal JC, Duff RJ (2009) New insights into morphology, anatomy, and systematics of hornworts. In: Goffinet B, Shaw J (eds) Bryophyte biology. Cambridge University Press, Cambridge, pp 139–171

    Google Scholar 

  • Robinson H, Shaw J (1984) Considerations on the evolution of the moss operculum. Bryologist 87:293–296

    Article  Google Scholar 

  • Rushing AE (1999) The mature sporophyte–gametophyte junction of Lorentziella imbricata. Bryologist 102:92–98

    Article  Google Scholar 

  • Rushing AE, Anderson WB (1996) The sporophyte–gametophyte junction in the moss Acaulon muticum (Pottiaceae): early stages of development. Am J Bot 83:1274–1281

    Article  Google Scholar 

  • Sugita M, Sugiura C, Arikawa T, Higuchi M (2004) Molecular evidence of an rpoA gene in the basal moss chloroplast genomes: rpoA is a useful molecular marker for phylogenetic analysis of mosses. Hikobia 14:171–175

    Google Scholar 

  • Sugiura C, Kobayashi Y, Aoki S, Sugita C, Sugita M (2003) Complete chloroplast DNA sequence of the moss Physcomitrella patens: evidence for the loss and relocation of rpoA from the chloroplast to the nucleus. Nucleic Acids Res 31:5324–5331

    Article  PubMed  CAS  Google Scholar 

  • Vitt DH (1981) Adaptive modes of the moss sporophyte. Bryologist 84:166–186

    Article  Google Scholar 

  • Vitt DH (1984) Classification of the bryopsida. In: Schuster RM (ed) New manual of bryology, vol 2. Hattori Botanical Laboratory, Nichinan, pp 696–759

    Google Scholar 

  • Wickett NJ, Goffinet B (2008) Origin and relationships of the myco-heterotrophic liverwort Cryptothallus mirabilis Malmb (Metzgeriales, Marchantiophyta). Bot J Linn Soc 156:1–12

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Provincia di Caserta (“Orto Botanico” project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Ligrone.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ligrone, R., Duckett, J.G. Morphology versus molecules in moss phylogeny: new insights (or controversies) from placental and vascular anatomy in Oedipodium griffithianum . Plant Syst Evol 296, 275–282 (2011). https://doi.org/10.1007/s00606-011-0496-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-011-0496-1

Keywords

Navigation