Skip to main content
Log in

Fertilization and embryogeny in Agapanthus praecox ssp. orientalis (Leighton) Leighton

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Fertilization and embryogeny in Agapanthus praecox ssp. orientalis are described for the first time, and embryogenic characters of Agapanthus are discussed. The main results are: (1) The pollen tube enters the embryo sac and discharges two sperm 44–48 h after pollination. (2) The sperm fuse with the egg cell and polar nuclei, forming zygote and primary endosperm nucleus, approximately 50 h after pollination. The zygote then enters a short period of dormancy. (3) Seven days after pollination, the zygote starts division. The first division of the zygote is transversal. (4) The embryo undergoes globular stage, rod-shaped stage, and finally forms a monocotyledonous embryo. (5) The suspensor cells are ephemeral and degenerate at the globular embryo stage. (6) Endosperm cells contain massive starch grains as nutrition for embryo development. (7) Embryogeny conforms to the Onagrad type, and endosperm formation is of the nuclear type; the whole process of embryogeny and endosperm development needs approximately 60 days in A. praecox ssp. orientalis. (8) Dicotyledonous together with monocotyledonous forms of embryo morphogenesis in Agapanthus supports the concept of homology of monocots and dicot cotyledons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bloor SJ, Falshaw R (2000) Covalently linked anthocyanin–flavonol pigments from blue Agapanthus flowers. Phytochemistry 53:575–579

    Article  PubMed  CAS  Google Scholar 

  • Burger WC (1998) The question of cotyledon homology in angiosperms. Bot Rev 64:356–371

    Article  Google Scholar 

  • Chen JH (2003) Research on forestry development based on the urban ecology environment construction (in Chinese with English abstract). Northeast Forestry University, China

    Google Scholar 

  • Duncan GD (1985) Agapanthus species–their potential, and the introduction of ten selected forms. Veld Flora 71–4:122–125

    Google Scholar 

  • Duncan AC, Jäger AK, Staden J (1999) Screening of Zulu medicinal plants for angiotensin converting enzyme (ACE) inhibitors. J Ethnopharmacol 68:63–70

    Article  PubMed  CAS  Google Scholar 

  • Feijó JA, Malhó R, Pais MSS (1992) A cytochemical study on the role of ATPases during pollen germination in Agapanthus umbelatus L’Her. Sex Plant Reprod 5:138–145

    Article  Google Scholar 

  • Hu SY (2005) Reproductive biology of angiosperms. China Higher Education Press, Beijing

    Google Scholar 

  • Hu SY, Xu LY (1990) A cytochemical technique for demonstration of lipid, polysaccharides and protein bodies in thick resin sections. Acta Bot Sin 32:841–846

    CAS  Google Scholar 

  • Johri BM (ed) (1984) Embryology of angiosperms. Springer, Berlin

    Google Scholar 

  • Kaido TL, Veale DJH, Havlik I, Rama DBK (1997) Preliminary screening of plants used in South Africa as traditional herbal remedies during pregnancy and labour. J Ethnopharmacol 55:185–191

    Article  PubMed  CAS  Google Scholar 

  • Kamara BI, Manong DTL, Brandt EV (2005) Isolation and synthesis of a dimeric dihydrochalcone from Agapanthus africanus. Phytochemistry 66:1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Leighton FM (1965) The genus Agapanthus L’Héritier. J S African Bot Suppl 4:1–50

    Google Scholar 

  • Lima-de-Faria A (1953) The regions of special cycle of division of Agapanthus chromosomes. Chromosoma 6:33–44

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A (1954) Chromosome gradient and chromosome field in Agapanthus. Chromosoma 6:330–370

    Article  PubMed  CAS  Google Scholar 

  • Lima-de-Faria A (1965) Labeling of the cytoplasm and the meiotic chromosomes of Agapanthus with H3-thymidine. Hereditas 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Nakamura O, Mimaki Y, Sashida Y, Nikaido T, Ohmoto T (1993) Agapanthussaponins A–D, new potent cAMP phosphodiesterase inhibitors from the underground parts of Agapanthus inapertus. Chem Pharm Bull (Tokyo) 41:1784–1789

    CAS  Google Scholar 

  • Nakano M, Tanaka S, Oota M, Ookawa E, Suzuki S, Saito H (2003) Regeneration of diploid and tetraploid plants from callus-derived protoplasts of Agapanthus praecox ssp orientalis (Leighton) Leighton. Plant Cell Tiss Org 72:63–69

    Article  CAS  Google Scholar 

  • Singh DN, Verma N, Raghuwanshi S, Shukla PK, Kulshreshtha DK (2008) Antifungal activity of Agapanthus africanus extractives. Fitoterapia 79:298–300

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Oota M, Nakano M (2002) Embryogenic callus induction from leaf explants of the Liliaceous ornamental plant, Agapanthus praecox ssp. orientalis (Leighton) Leighton: Histological study and response to selective agents. Sci Hortic 95:123–132

    Article  CAS  Google Scholar 

  • Titova GE (2003) Algorithms of embryo morphogenesis in Agapanthus praecox Willd. (Alliaceae) in monocotyly, dicotyly and transitional forms. Acta Biol Cracov Bot 45:161–165

    Google Scholar 

  • Veale DJH, Havlik I, Oliver DW, Dekker TG (1999) Pharmacological effects of Agapanthus africanus on the isolated rat uterus. J Ethnopharmacol 66:257–262

    Article  PubMed  CAS  Google Scholar 

  • Xi XY (1987) The development of green onion (Allium fistulosum L.) embryo and endosperm. J Integr Plant Biol 29:459–464

    Google Scholar 

  • Zhang D, Zhuo LH, Shen XH (2010) Sporogenesis and gametogenesis in Agapanthus praecox Willd. orientalis (Leighton) Leighton and their systematic implications. Plant Syst Evol 288:1–11

    Article  Google Scholar 

  • Zonneveld BJM, Duncan GD (2003) Taxonomic implications of genome size and pollen colour and vitality for species of Agapanthus L’ Héritier (Agapanthaceae). Plant Syst Evol 241:115–123

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are highly grateful to the School of Agriculture and Biology of Shanghai Jiaotong University for providing field and laboratory facilities. This study enjoyed generous support from the Research Fund for the Doctoral Program of Higher Education of China (200802250010), the National Science Fund of China (30571475) and the Key Project of the Shanghai Agricultural Committee (2006-4-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Huan Zhuo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D., Ren, L., Shen, XH. et al. Fertilization and embryogeny in Agapanthus praecox ssp. orientalis (Leighton) Leighton. Plant Syst Evol 293, 25–30 (2011). https://doi.org/10.1007/s00606-010-0378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-010-0378-y

Keywords

Navigation