Skip to main content
Log in

Morphological features and isoenzyme characterization of endosymbiotic algae from green hydra

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Symbiotic associations are of a wide significance in evolution and biodiversity. Green hydra is a typical example of endosymbiosis. In its gastrodermal myoepithelial cells, it harbors individuals of unicellular green algae. Morphological characteristics of isolated algae determined by light and electron microscopy are presented. Cytological morphometric parameters (cell area, cell radius, chloroplast area) of isolated algae from green hydra (Cx), as well as from reference species Chlorella kessleri (Ck) and Chlorella vulgaris (Cv), revealed similarity between the isolated endosymbiont and C. kessleri. Isoenzyme patterns of esterase (EST), peroxidase (POX), and catalase (CAT) were used for the investigation of genetic variability in endosymbiotic algae isolated from green hydra. Out of 14 EST isoenzymes observed in Cx species, 9 were expressed in the Cx sample. Results of the EST isoenzyme analysis indicated a higher degree of similarity between Cx and Cv than between Cx and Ck. Due to much higher heterogeneity, EST isoenzymes seem to be more suitable genetic markers for identification of different Chlorella species than CAT and POX isoenzymes. Results obtained suggest that symbiogenesis in green hydra has probably not been terminated yet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Agostinucci K, Manfredi TG, Cosmas A, Martin K, Han SN, Wu D, Sastre J, Meydani SN, Meydani M (2002) Vitamin E and age alter liver mitochondrial morphometry. J Anti-Aging Med 5:173–178

    Article  CAS  Google Scholar 

  • Arkhipchuk W, Blaise C, Malinovskaya MV (2005) Use of hydra for chronic toxicity assessment of waters intended for human consumption. Environ Pollut 142:200–211

    Article  PubMed  Google Scholar 

  • Balen B, Krsnik-Rasol M, Simeon-Rudolf V (2003) Isoenzymes of peroxidase and esterase related to morphogenesis in Mammillaria gracilis Pfeiff. tissue culture. J Plant Physiol 160:1401–1406

    Article  CAS  PubMed  Google Scholar 

  • Baron PJ, Real LE, Ciocco NF, Re ME (2004) Morphometry, growth and reproduction of an Atlantic population of the razor clam Ensis macha. Sci Mar 68:211–217

    Article  Google Scholar 

  • Beach MJ, Pascoe D (1998) The role of Hydra vulgaris (Pallas) in assessing the toxicity of freshwater pollutants. Wat Res 32:101–106

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown AHD, Weir RS (1983) Measuring genetic variability in plant populations. In: Tankley SD, Orton TI (eds) Isozymes in plant genetics and breeding. Development in plant genetics and breeding 1. Elsevier, Amsterdam, pp 219–240

    Google Scholar 

  • Burlina A, Galzigna L (1972) A new and simple procedure for serum arylesterase. Clin Chim Acta 39:255–257

    Article  CAS  Google Scholar 

  • Burnett AL (1973) Biology of hydra. Academic Press, New York

    Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalases and peroxidases. In: Colowick SP, Kaplan NO (eds) Methods in enzymology. Academic Press, New York, pp 764–775

    Chapter  Google Scholar 

  • Cubadda R, Quattrucci E (1974) Separation by gel electrofocussing and characterization of wheat esterses. J Sci Food Agric 25:417–422

    Article  CAS  PubMed  Google Scholar 

  • Cummins I, Burnet M, Edwards R (2001) Biochemical characterisation of esterases active in hydrolysing xenobiotics in wheat and competing weeds. Physiol Plant 113:477–485

    Article  CAS  Google Scholar 

  • De Carvalho VM, Marques RM, Lapenta AS, Machado MFPS (2003) Functional classification of esterases from leaves of Aspidosperma polyneuron M. Arg. (Apocynaceae). Gen Mol Biol 26:195–198

    Google Scholar 

  • Diaz-Pulido G, Villamil L, Almanza V (2007) Herbivory effects on the morphology of the brown alga Padina boergesenii (Phaeophyta). Phycologia 46:131–136

    Article  Google Scholar 

  • Douglas AE, Smith DC (1984) The green hydra symbiosis. VIII. Mechanisms in symbiont regulation. Proc R Soc Lond B 221:298–319

    Article  Google Scholar 

  • Dunn K (1987) Growth of endosymbiotic algae in the green hydra, Hydra viridissima. J Cell Sci 88:571–578

    Google Scholar 

  • Falconer DS (1986) Introducción a la genética cuantitativa. CECSA, México

  • Fawley MW, Fawley KP, Buchheim MA (2004) Molecular diversity among communities of freshwater microchlorophytes. Microb Ecol 48:489–499

    Article  CAS  PubMed  Google Scholar 

  • Friedl T (1997) Evolution of the green algae. In: Bhattacharya D (ed) Origins of algae and their plastids. Berlin, Springer, pp 87–101

    Google Scholar 

  • Gershater MC, Edwards R (2007) Regulating biological activity in plants with carboxylesterases. Plant Sci 173:579–588

    Article  CAS  Google Scholar 

  • Habetha M, Bosch TCG (2005) Symbiotic Hydra express a plant-like peroxidase gene during oogenesis. J Exp Biol 208:2157–2165

    Article  CAS  PubMed  Google Scholar 

  • Habetha M, Anton-Erksleben F, Neumann K, Bosch TCG (2003) The Hydra viridis/Chlorella symbiosis. Growth and sexual differentiation in polyps without symbionts. Zoology 106:1–8

    Article  Google Scholar 

  • Handa S, Nakahara M, Tsuboa H, Deguchi H, Masuda Y, Nakano T (2006) Choricystis minor (Trebouxiophyceae, Chlorophyta) as a symbiont of several species of freshwater sponge. Hikobia 14:365–373

    Google Scholar 

  • Hegewald E, Hanagata N (2000) Phylogenetic studies on Scenedesmaceae (Chlorophyta). Algol Stud 100:29–49

    Google Scholar 

  • Holstein T, Emschermann P (1995) Cnidaria: Hydrozoa Kamptozoa. Gustav Fischer, Stuttgart

    Google Scholar 

  • Horvatić J, Vidaković-Cifrek Ž, Regula I (2000) Trophic level, bioproduction and toxicity of the water of lake Sakadaš (Nature Park Kopački rit, Croatia). Limnol Report 33:89–94

    Google Scholar 

  • Huss VAR, Holweg C, Seidel B, Reich V, Rahat M, Kessler E (1993/1994) There is an ecological basis for host/symbiont specificity in Chlorella/Hydra symbioses. Endocyt Cell Res 10:35–46

    Google Scholar 

  • Kalafatić M, Kopjar N (1995) Response of green hydra to pirimicarb. Biol Bratislava 50:289–292

    Google Scholar 

  • Kaltenpoth M, Göttler W, Herzne G, Strohm (2005) Symbiotic bacteria protect wasp larvae from fungal infections. Curr Biol 15:475–479

    Article  CAS  PubMed  Google Scholar 

  • Kessler E, Kauer G, Rahat M (1991) Excretion of sugars by Chlorella species capable and incapable of symbiosis with Hydra viridis. Bot Acta 104:58–63

    CAS  Google Scholar 

  • Kovačević G, Kalafatić M, Ljubešić N, Šunjić H (2001) The effect of chloramphenicol on the symbiosis between alga and hydra. Biol Bratislava 56:605–610

    Google Scholar 

  • Kovačević G, Ljubešić N, Kalafatić M (2005) Newly described mechanims in hydra-alga symbiosis. In: Bosch TGC, Holstein TW, David CN (eds) Abstract book of the international workshop hydra and the molecular logic of regeneration. DFG, Tutzing,p 95

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lewontin RC (1974) The genetic basis of evolutionary change. Columbia University Press, New York

    Google Scholar 

  • Mädgefrau K, Ehrendorfer F (1988) Botanika: Sistematika, evolucija i geobotanika. Školska knjiga, Zagreb

    Google Scholar 

  • McAuley PJ, Smith DC (1982) The green hydra symbiosis. V. Stages in the intracellular recognition of algal symbionts by digestive cells. Proc R Soc Lond B 216:7–23

    Article  Google Scholar 

  • Mittler R, Zilinskas B (1993) Detection of ascorbate peroxidase activity in native gels by inhibition of the ascorbate-dependent reduction of nitroblue tetrazolium. Anal Biochem 212:540–546

    Article  CAS  PubMed  Google Scholar 

  • Nakahara M, Handa S, Nakano T, Deguchi H (2003) Culture and pyrenoid structure of a symbiotic Chlorella species isolated from Paramecium bursaria. Symbiosis 34:203–214

    Google Scholar 

  • O’Brien TL (1982) Inhibition of vacuolar membrane fusion by intracellular symbiotic algae in Hydra viridis (Florida strain). J Exp Zool 223:211–218

    Article  PubMed  Google Scholar 

  • Pratt R (1941) Studies on Chlorella vulgaris IV. Am J Bot 28:492–497

    Article  CAS  Google Scholar 

  • Rahat M (1991) An ecological approach to hydra-cell colonization by algae-algae/hydra symbioses. Oikos 62:381–388

    Article  Google Scholar 

  • Reisser W, Wiessner W (1984) Autotrophic eukaryotic freshwater symbionts. In: Linskens HF, Heslop-Harrison J (eds) Cellular interactions (encyclopedia of plant physiology). Springer, Berlin, pp 59–90

    Google Scholar 

  • Scandalios JG (1990) Response of plant antioxidant defense genes to environmental stress. Adv Genet 28:1–41

    Article  CAS  PubMed  Google Scholar 

  • Siegel BZ (1993) Plant peroxidases: an organismic perspective. Plant Growth Regul 12:303–312

    Article  CAS  Google Scholar 

  • Tonar Z, Markos A (2004) Microscopy and morphometry of integument of the foot of pulmonate gastropods Arion rufus and Helix pomatia. Acta Vet Brno 73:3–7

    Google Scholar 

  • Vianello A, Zancani M, Nagy G, Macrì F (1997) Guaiacol peroxidase associated to soybean root plasma membranes oxidizes ascorbate. J Plant Physiol 150:573–577

    CAS  Google Scholar 

  • Woodbury W, Spencer AK, Stahmann MA (1971) An improved procedure using ferrycyanide for detecting catalase isozymes. Anal Biochem 44:301–305

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The presented results are a product of the scientific project “Molecular phylogeny, evolution and symbiosis of freshwater invertebrates” and project 119-1191196-1202 carried out with the support of the Ministry of Science, Education and Sport of the Republic of Croatia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goran Kovačević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovačević, G., Radić, S., Jelenčić, B. et al. Morphological features and isoenzyme characterization of endosymbiotic algae from green hydra. Plant Syst Evol 284, 33–39 (2010). https://doi.org/10.1007/s00606-009-0235-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0235-z

Keywords

Navigation