Skip to main content
Log in

The flower biology of Daphne gnidium L. (Thymelaeaceae)

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Daphne gnidium is a circum-Mediterranean evergreen shrub. Flower and pollen features related to pollination mechanism were analyzed, and the seasonal presence of insects visiting the plant was monitored. The morphology and functionality of flowers are compatible with entomophily, as are pollen viability, which is maintained for a few hours only after anthesis, and the very short stigmatic receptivity. The reproductive fitness of the species is low and the ripening process often fails (35% collapsed embryos). While male organ functionality is fairly regular, the female organ often shows developmental arrest. The complex or transient evolutionary traits displayed by D. gnidium are comparable to those of Thymelaea hirsuta and other members of the Thymelaeaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alonso C (2005) Pollination success across an elevation and sex ratio gradient in gynodioecious Daphne laureola. Amer J Bot 92:1264–1269

    Article  Google Scholar 

  • APAT (1961–1990) Annali idrologici. http://www.annali.apat.gov.it

  • Bayers JBP, Marais E (1998) Palynological studies of the Thymelaeaceae of Cape Flora. Grana 37:193–202

    Google Scholar 

  • Bredenkamp CL, Van Wyk AE (1996) Palynology of the genus Passerina (Thymelaeaceae): relationships form and functions. Grana 35:335–346

    Article  Google Scholar 

  • Brewbaker JL (1967) The distribution and phylogenetic significance of binucleate and trinucleate pollen grains in the angiosperms. Amer J Bot 54:1069–1083

    Article  Google Scholar 

  • Brewbaker JL, Kwack BH (1963) The essential role of calcium ion in pollen germination and pollen tube growth. Amer J Bot 50:859–865

    Article  CAS  Google Scholar 

  • Candau P (1987) Thymelaeaceae. In: Valdes B, Diez MJ, Fernandez I (eds) Atlas polinico de Andalucia occidental. Instituto de Desarrollo Regional n. 43, Universidad de Sevilla, EXCMA, Diputacion de Cadiz

  • Caporali E, Roccotiello E, Cornara L, Casazza G, Minuto L (2006) An anatomical study of floral variation in Thymelaea hirsuta (L.) Endl. related to sexual dimorphism. Plant Biosyst 140:123–131

    Article  Google Scholar 

  • Chaudhury AM, Koultnow A, Payne T, Luo M, Tucker MR, Dennis ES, Peacock WJ (2001) Control of early seed development. Ann Rev Cell Dev Biol 17:677–699

    Article  CAS  Google Scholar 

  • Cody ML, Mooney HA (1978) Convergence versus nonconvergence in Mediterranean climate ecosystems. Ann Rev Ecol System 9:265–321

    Article  Google Scholar 

  • Coleman AW, Goff LJ (1985) Applications of fluorochromes to pollen biology. I. Mithramycin and 49, 6-diamidino-2- phenylindole (DAPI) as vital stains and for quantitation of nuclear DNA. Stain Technol 60:145–154

    PubMed  CAS  Google Scholar 

  • Cornara L, Borghesi B, Caporali E, Casazza G, Roccotiello E, Troiano G, Minuto L (2005) Floral features and reproductive ecology in Thymelaea hirsuta (L.) Endl. Plant Syst Evol 250:157–172

    Article  Google Scholar 

  • Cowling RM (2002) Heterogeneity, speciation/extinction history and climate: explaining regional plant diversity patterns in the Cape Floristic Region. Divers Distrib 8:163–179

    Article  Google Scholar 

  • Crane PR (1986) Form and function in wind-dispersed pollen. In: Blackmore S, Ferguson IK (eds) Pollen and spores: form and function. Academic Press, London, pp 179–202

    Google Scholar 

  • Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends Ecol Evol 17:361–369

    Article  Google Scholar 

  • Dafni A (1992) Pollination ecology. Oxford University Press, Oxford

    Google Scholar 

  • De la Bandera MC, Traveset A (2006) Breeding system and spatial variation in the pollination biology of the heterocarpic Thymelaea velutina (Thymelaeaceae). Plant Syst Evol 257:9–23

    Article  Google Scholar 

  • Dommée B, Biascamano A, Denelle N, Bompar JL, Thompson JD (1995) Sexual tetramorphism in Thymelaea hirsuta (Thymelaeaceae): morph ratios in open-pollinated progeny. Amer J Bot 82:734–740

    Article  Google Scholar 

  • Franchi GG, Bellani L, Nepi M, Pacini E (1996) Types of carbohydrate reserves in pollen: localization, systematic distribution and ecophysiological significance. Flora 191:143–159

    Google Scholar 

  • Franchi GG, Nepi M, Dafni A, Pacini E (2002) Partially hydrated pollen: taxonomic distribution, ecological and evolutionary significance. Plant Syst Evol 234:211–227

    Article  CAS  Google Scholar 

  • Gritti ES, Smith B, Sykes MT (2006) Vulnerability of Mediterranean Basin ecosystems to climate change and invasion by exotic plant species. J Biogeogr 33:145–157

    Article  Google Scholar 

  • Guitián J, Guitián P (1990) Fenología de la floración y fructificación en plantas de un espinal del Bierzo (León, noroeste de España). Anales Jará Bot Madrid 48:53–61

    Google Scholar 

  • Herber BE (2002) Pollen morphology of the Thymelaeaceae in relation to its taxonomy. Plant Syst Evol 232:107–121

    Article  Google Scholar 

  • Herrera CM (1981) Are tropical fruits more rewarding to dispersers than temperate ones? Am Nat 118:896–907

    Article  Google Scholar 

  • Herrera CM (1984) A study of avian frugivores, bird-dispersed plants, and their interaction in Mediterranean scrublands. Ecol Monogr 54:1–23

    Article  Google Scholar 

  • Herrera J (1985) Néctar secretion pattems in southern Spanish Mediterranean shrublands. Israel J Bot 34:47–58

    Google Scholar 

  • Herrera CM (1986) Vertebrate-dispersed plants: Why they don’t behave the way they should. In: Estrada A, Fleming TH (eds) Frugivores and seed dispersal. Junk, Dordrecht, pp 5–18

    Google Scholar 

  • Herrera J (1987a) Biología reproductiva de algunas especies del matorral de Doñana. Anales Jará Bot Madrid 44:483–497

    Google Scholar 

  • Herrera J (1987b) Flower and fruit biology in Southern Spanish Mediterranean shrublands. Ann Missouri Bot Gard 74:69–78

    Article  Google Scholar 

  • Herrera CM (1988) Variation in mutualisms: the spatio-temporal mosaic of a pollinator assemblage. Biol J Linn Soc 35:95–125

    Article  Google Scholar 

  • Herrera CM, Jordano P, Guitián J, Traveset A (1998) Annual variability in seed production by woody plants and the mating concept: reassessment of principles and relationship to pollination and seed dispersal. Am Nat 152:576–594

    Article  PubMed  CAS  Google Scholar 

  • Heslop-Harrison Y, Shivanna KR (1977) The receptive surface of the angiosperm stigma. Ann Bot 41:1233–1258

    Google Scholar 

  • Hoekstra FA (1986) Water content in relation to stress in pollen. In: Leopold AC (ed) Membranes, metabolism and dry organism. Comstock Publishing Associates, Cornell University Press, Ithaca, pp 102–122

    Google Scholar 

  • Jordano P (1982) Seed weight variation and differential avian dispersal in blackberries Rubus ulmifolius. Oikos 43(2):149–153

    Article  Google Scholar 

  • Jordano P (1987) Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. The American Naturalist 129:657–677

    Article  Google Scholar 

  • Knapp AK, Burns CE, Fynn RWS, Kirkman KP, Morris CD, Smith MD (2006) Convergence and contingency in production–precipitation relationships in North American and South African C4 grasslands. Oecologia 149:456–464

    Article  PubMed  Google Scholar 

  • Lambdon PW, Hulme PE (2006) Predicting the invasion success of Mediterranean alien plants from their introduction characteristics. Ecography 29:853–865

    Article  Google Scholar 

  • Minuto L, Casazza G, Profumo P (2004) Population decrease of Thymelaea hirsuta (L.) Endl. in Liguria: conservation problems for the north Tyrrhenian sea. Plant Biosyst 138(1):11–19

    Article  Google Scholar 

  • Minuto L, Casazza G, Profumo P (2005) Sexual polymorphism and spatial segregation of Thymelaea hirsuta in Liguria (NW Italy). Plant Biosyst 139:234–240

    Article  Google Scholar 

  • Moog U, Fiala B, Feerle W, Maschwitz U (2002) Thrips pollination of the dioecious ant plant Macaranga hullettii (Euphorbiaceae) in southeast Asia. Amer J Bot 89:50–59

    Article  Google Scholar 

  • Nepi M, Franchi GG, Pacini E (2001) Pollen hydration status at dispersal: cytophysiological features and strategies. Protoplasma 216:171–180

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure: principles and selected methods. Thermarcarphy, Melbourne

    Google Scholar 

  • Pacini E (2000) From anther and pollen ripening to pollen presentation. Plant Syst Evol 222:19–43

    Article  Google Scholar 

  • Pickert M (1988) In vitro germination and storage of trinucleate Arabidopsis thaliana (L.) pollen grains. AIS 26. http://www.arabidopsis.org/ais/1988/picke-1988-aadeg.html

  • Roulston T’ai H, Buchmann SL (2000) A phylogenetic reconsideration of the pollen starch–pollination correlation. Evol Ecol Res 2:627–643

    Google Scholar 

  • Simmons MT, Cowling RM (1996) Why is the Cape Peninsula so rich in plant species? An analysis of the independent diversity components. Biodivers Conserv 5:551–574

    Article  Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. P Natl Acad Sci USA 103:1301–1306

    Article  CAS  Google Scholar 

  • Terry LI (2001) Thrips and weevils as dual, specialist pollinators of the Australian Cycad Macrozamia communis (Zamiaceae). Int J Plant Sci 162:1293–1305

    Article  Google Scholar 

  • Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University Press, Oxford

    Book  Google Scholar 

  • Vagge I (1999) La diffusione del bioclima mediterraneo in Liguria (Italia Nord Occidentale). Fitosociologia 36:95–109

    Google Scholar 

  • Venkateswarlu J (1945) Embryological studies in the Thymelaeaceae. I. Thymelaea arvensis Lamk. J Indian Bot Soc 24:45–66

    Google Scholar 

  • Venkateswarlu J (1947) Embryological studies in the Thymelaeaceae. II. Daphne cannabina Wall. and Wikstroemia canescens Meissn. J Indian Bot Soc 26:13–39

    Google Scholar 

  • Whelan RJ, Goldingay RL (1989) Factors affecting fruit-set in Telopea speciosissima (Proteaceae): the importance of pollen limitation. J Ecol 77:1123–1134

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to B. Borghesi and G. Troiano (DIP.TE.RIS., University of Genoa) for the identification of insects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Minuto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roccotiello, E., Casazza, G., Galli, L. et al. The flower biology of Daphne gnidium L. (Thymelaeaceae). Plant Syst Evol 279, 41–49 (2009). https://doi.org/10.1007/s00606-009-0144-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-009-0144-1

Keywords

Navigation