Skip to main content
Log in

Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Reproductive morphology and development are described in the Brazilian grass Streptochaeta spicata, in order to assess the homologies of the characteristic grass inflorescence, termed a spikelet, and other reproductive organs. Streptochaeta possesses some features that are commonly found in Poaceae, including a well-differentiated embryo. It also possesses some relatively unusual, presumably derived features, such as non-plumose stigmas, which indicate that it could be insect-pollinated. It shares some features with other early-divergent grasses, such as Pharus, which could represent plesiomorphic conditions for grasses. The inflorescence unit in Streptochaeta has been interpreted as a compound branching system or pseudospikelet. The present data suggest that it is a highly modified spikelet, with a modified flower borne either on a different axis to the basal bracts (glumes) or on the same axis as the basal bracts. The three bracts below the stamens are interpreted as homologous to the lodicules. The Streptochaeta spikelet could be considered as morphologically intermediate between the true spikelet of grasses and reproductive units of close grass relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analysis of the silky 1 gene reveal conservation in floral organ specification beween eudicots and monocots. Molec Cell 5:569–579

    Article  PubMed  CAS  Google Scholar 

  • Arber A (1929) Studies in the Gramineae. VI. 1. Streptochaeta. 2. Anomochloa. 3. Ichnanthus. Ann Bot 43:35–53

    Google Scholar 

  • Arber A (1934) The Gramineae. Cambridge University Press, Cambridge

    Google Scholar 

  • Aulbach-Smith CA, Herr JM (1984) Development of the ovule and female gametophyte in Eustachys petraea and E. glauca (Poaceae). Amer J Bot 71:427–438

    Article  Google Scholar 

  • Bhanwra RK (1988) Embryology in relation to systematics of Gramineae. Ann Bot 62:215–233

    Google Scholar 

  • Bhanwra RK, Kaur N, Garg A (1991) Embryological studies in some grasses and their taxonomic significance. Bot J Linn Soc 107:405–419

    Article  Google Scholar 

  • Bhanwra RK, Sharma ML, Vij SP (2001) Comparative embryology of Bambusa tulda Roxb. and Thyrsostachys siamensis Gamble (Poaceae: Bambuseae). Bot J Linn Soc 135:113–124

    Article  Google Scholar 

  • Bremer K (2002) Gondwanan evolution of the grasses alliance of families (Poales). Evolution 56:1374–1381

    PubMed  CAS  Google Scholar 

  • Briggs BG, Marchant AD, Gilmore S, Porter CL (2000) A molecular phylogeny of Restionaceae and allies. In: Wilson KL, Morrison DL (eds) Monocots: systematics and evolution. CSIRO, Melbourne, pp 661–671

    Google Scholar 

  • Celakovský LJ (1889) Über den Ärchenbau der Brasilianischen Grasgattung Streptochaeta Schrader. Sitzungsber Königl Böhm Ges Wiss Prag, Math.-Naturwiss 3:14–42

    Google Scholar 

  • Clayton WD (1990) The spikelet. In: Chapman GP (ed) Reproductive versatility in the grasses. Cambridge University Press, Cambridge, pp 32–52

    Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum. Grasses of the World. Her Majesty’s Stationary Office, London

    Google Scholar 

  • Clifford HT (1987) Spikelet and floral morphology. In: Soderstrom TR, Hilu KW, Campbell CS, Barkworth ME (eds) Grass systematics and evolution. Smithsonian Institution Press, Washington, pp 21–30

    Google Scholar 

  • Cocucci AE, Anton AM (1988) The grass flower: suggestions on its origin and evolution. Flora 181:353–362

    Google Scholar 

  • Grass Phylogeny Working Group (GPWG) (2001) Phylogeny and subfamilial classification of the grasses (Poaceae). Ann Missouri Bot Gard 88:373–457

    Article  Google Scholar 

  • Hari Gopal B, Mohan Ram HY (1987) Fruit development and structure in some Indian bamboos. Ann Bot 60:477–483

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique. McGraw Hill Book Co., New York

    Google Scholar 

  • Judziewicz EJ, Soderstrom T (1989) Morphological, anatomical, and taxonomical studies in Anomochloa and Streptochaeta (Poaceae: Bambusoideae). Smithsonian Contrib. Bot 68:1–52

    Google Scholar 

  • Judziewicz EJ, Clark LG, Londoño X, Stern MJ (1999) American bamboos. Smithsonian Institution Press, Washington

    Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Pl Physiol 125:1198–1205

    Article  CAS  Google Scholar 

  • Le Roux LG, Kellogg EA (1999) Floral development and the formation of unisexual spikelets in the Andropogoneae (Poaceae). Amer J Bot 86:354–366

    Article  Google Scholar 

  • Li BL, You RL (1991) Structure and development of stigmatic branches and style and their relation to pollen tube growth in wheat. Acta Bot Sin 33:712–717

    Google Scholar 

  • Linder HP, Rudall PJ (2005) The evolutionary history of Poales. Annual Rev Ecol Evol Syst 36:107–124

    Article  Google Scholar 

  • Maze J, Dengler NG, Bohm LR (1971) comparative floret development in Stirpa tortilis and Oryzopsis miliaceae (Graminae). Bot Gaz 132:273–298

    Article  Google Scholar 

  • Michelangeli FA, Davis JI, Stevenson DW (2003) Phylogenetic relationships among Poaceae and related families as inferred from morphology, inversions in the plastid genome, and sequence data from the mitochondrial and plastid genomes. Amer J Bot 90:93–106

    Article  CAS  Google Scholar 

  • Page VM (1951) Morphology of the spikelet of Streptochaeta. Bull Torrey Bot Club 78:22–37

    Article  Google Scholar 

  • Philipson WR (1985) Is the grass gynoecium monocarpellary? Amer J Bot 72:1954–1961

    Article  Google Scholar 

  • Reeder JR (1953) The embryo of Streptochaeta and its bearing on the homology of the coleoptile. Amer J Bot 40:77–80

    Article  Google Scholar 

  • Reeder JR (1957) The grass embryo in systematics. Amer J Bot 44:756–768

    Article  Google Scholar 

  • Rowlee WW (1898) The morphological significance of the lodicules of grasses. Bot Gaz 25:199–203

    Article  Google Scholar 

  • Rudall PJ (1997) the nucellus and chalaza in monocotyledons: structure and systematics. Bot Rev 63:140–181

    Article  Google Scholar 

  • Rudall PJ, Bateman RM (2004) Evolution of zygomorphy in monocot flowers: iterative patterns and developmental constraints (Tansley Review). New Phytol 162:25–44

    Article  Google Scholar 

  • Rudall PJ, Stuppy W, Cunniff J, Kellogg EA, Briggs BG (2005) Evolution of reproductive structures in grasses (Poaceae) inferred by sister-group comparison with their putative closest living relatives, Ecdeiocoleaceae. Amer J Bot 92:1432–1443

    Article  Google Scholar 

  • Sajo MG, Prychid CJ, Rudall PJ (2004) Structure and development of the ovule in Bromeliaceae. Kew Bull 59:261–267

    Article  Google Scholar 

  • Sajo MG, Longhi-Wagner H, Rudall PJ (2007) Floral development and embryology in the early-divergent grass Pharus. Int J Pl Sci 168:181–191

    Article  Google Scholar 

  • Sanchez-Ken JG, Clark LG, Kellogg EA, Kay EE (2007) Reinstatement and emendation of subfamily Micrairoideae (Poaceae). Syst Bot 32:71–80

    Article  Google Scholar 

  • Soderstrom TR (1981) Some evolutionary trends in the Bambusoideae (Poaceae). Ann Missouri Bot Gard 68:15–47

    Article  Google Scholar 

  • Soderstrom TR, Calderón CE (1971) Insect pollination in tropical rain forest grasses. Biotropica 3:1–16

    Article  Google Scholar 

  • Soreng RJ, Davis JI (1998) Phylogenetics and character evolution in the grass family (Poaceae): simultaneous analysis of morphological and chloroplast DNA restriction site character sets. Bot Rev 64:1–85

    Article  Google Scholar 

  • Whipple CJ, Schmidt RJ (2006) Genetics of grass flower development. Adv Bot Res 44:385–424

    Article  CAS  Google Scholar 

  • Whipple CJ, Zanis MG, Kellogg EA, Schimdt R (2007) Conservation of B class gene expression in the second whorls of a basal grass and outgroup links the origin of lodicules and petals. Proc Natl Acad Sci USA 104:1081–1086

    Article  PubMed  CAS  Google Scholar 

  • Zanis MG (2007) Grass spikelet genetics and duplicate gene comparison. Int J Pl Sci 168:93–110

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their detailed comments on the manuscript. MGS acknowledges funding from the Kew Latin American Fellowship Program and the Royal Society to support her visit to the Jodrell Laboratory, Royal Botanic Gardens, Kew, where this research was carried out. Both MGS and HLW received a fellowship from CNPq, which is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Rudall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sajo, M.G., Longhi-Wagner, H.M. & Rudall, P.J. Reproductive morphology of the early-divergent grass Streptochaeta and its bearing on the homologies of the grass spikelet. Plant Syst Evol 275, 245–255 (2008). https://doi.org/10.1007/s00606-008-0080-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0080-5

Keywords

Navigation