Skip to main content
Log in

Genetic relationships among three native North-American Mahonia species, invasive Mahonia populations from Europe, and commercial cultivars

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Horticulture is one of the most important pathways for plant invasion. We used microsatellite markers to reveal the impact of plant breeding on Mahonia aquifolium, an invasive ornamental shrub. Since it was bred by hybridization with the related species M. repens and M. pinnata, we compared populations of the three native species, various commercial cultivars and invasive populations. Invasive populations and cultivars were genetically differentiated from the native groups, but differences did not result from genetic bottlenecks. In cultivars but not in invasive populations, we proved genes from M. pinnata. No significant amount of M. repens genes were found in cultivars and invasive populations, but this result has to be viewed with caution because of the close relationship between native M. aquifolium and M. repens. We conclude that the evolution of invasive Mahonia populations was a result of restriction of gene pool during introduction, secondary release, and artificial selection, in combination with an increase of genetic diversity by plant breeders and by extensive gene flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahrendt LWA (1961) Berberis and Mahonia. A taxonomic revision. Bot J Linn Soc Lond 57:1–410

    Article  Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: Population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Auge H, Brandl R (1997) Seedling recruitment in the invasive clonal shrub, Mahonia aquifolium Pursh (Nutt.). Oecologia 110:205–211

    Article  Google Scholar 

  • Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions. Cambridge University Press, Cambridge, pp 21–33

    Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Bundesverband Deutscher Pflanzenzüchter e.V. (2007) Aufgaben der Pflanzenzüchtung. http://www.bdp-online.de/zuechtung/zuecht1.php?menu=3

  • Dehnen-Schmutz K, Touza J, Perrings C, Williamson M (2007) The horticultural trade and ornamental plant invasions in Britain. Conserv Biol 21:224–231

    Article  PubMed  Google Scholar 

  • Dieringer D, Schlötterer C (2002) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Molec Ecol Notes 3:167–169

    Article  Google Scholar 

  • Durka W, Bossdorf O, Prati D, Auge H (2005) Molecular evidence for multiple introduction of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Molec Ecol 14:1697–1706

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants. Proc Natl Acad Sci USA 97:7043–7050

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Molec Ecol 14:2611–2620

    Article  CAS  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F- statistics. J. Heredity 86:485–486

    Google Scholar 

  • Goudet J (1999) PCAGEN. http://www2.unil.ch/popgen/softwares/pcagen.htm

  • Gray AJ (1986) Do invading species have definable genetic characteristics? Phil Trans Roy Soc Lond 314:655–674

    Article  Google Scholar 

  • Günther H (1979) Schöne Blütengehölze. VEB Deutscher Landwirtschaftsverlag DDR, Berlin

    Google Scholar 

  • Hollingsworth ML, Hollingsworth PM, Jenkins GI, Bailey JP, Ferris C (1998) The use of molecular markers to study patterns of genotypic diversity in some invasive alien Fallopia spp. (Polygonaceae). Molec Ecol 7:1681–1691

    Article  CAS  Google Scholar 

  • Houtman RT, Kraan KJ, Kromhout H (2004) Mahonia aquifolium, M. repens, M. x wagneri en hybriden. Dendroflora 41:42–69

    Google Scholar 

  • Kim Y-D, Kim S-H, Landrum LR (2004) Taxonomic and phytogeographic implications from ITS phylogeny in Berberis (Berberidaceae). J Pl Res 117:175–182

    Article  CAS  Google Scholar 

  • Kitajima K, Fox AM, Sato T, Nagamatsu D (2006) Cultivar selection prior to introduction may increase invasiveness: evidence from Ardisia crenata. Biol Invas 8:1471–1482

    Article  Google Scholar 

  • Klotz S, Kühn I, Durka W (2002) BIOLFLOR - Eine Datenbank mit biologisch-ökologischen Merkmalen zur Flora von Deutschland. Schriftenreihe für Vegetationskunde, vol 38, Bonn—Bad Godesberg

  • Kowarik I (1992) Einführung und Ausbreitung nichteinheimischer Gehölzarten in Berlin und Brandenburg. Verhandlungen Botanischer Vereine Berlin Brandenburg 3:1–188

    Google Scholar 

  • Kowarik I (1995) Time lags in biological invasions with regard to the success and failure of alien species. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasions—general aspects and special problems. Academic Publishing, Amsterdam, pp 15–38

    Google Scholar 

  • Kowarik I (2005) Urban ornamentals escaped from cultivation. In: Gressel J (ed) Crop Ferality and Volunteerism. CRC Press, Boca Raton, pp 97–121

    Google Scholar 

  • Laferriere J (1997) Transfer of specific and infraspecific taxa from Mahonia to Berberis (Berberidaceae). Bot Zhurn 82:95–99

    Google Scholar 

  • Lodge DM (1993) Biological Invasions: Lessons for Ecology. Trends Ecol Evol 8:133–137

    Article  Google Scholar 

  • Mack RN (2000) Cultivation fosters plant naturalization by reducing environmental stochasticity. Biol Invas 2:111–122

    Article  Google Scholar 

  • Maron JL, Vila M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecol Monogr 74:261–280

    Article  Google Scholar 

  • Milne RI, Abbott RJ (2000) Origin and evolution of invasive naturalized material of Rhododendron ponticum L. in the British Isles. Molec Ecol 9:541–556

    Article  CAS  Google Scholar 

  • Monzingo HN (1987) Shrubs of the Great Basin. University of Nevada Press, Reno

    Google Scholar 

  • Munz P (1959) A California flora. University of California Press, Berkeley

    Google Scholar 

  • Neuffer B, Auge H, Mesch H, Amarell U, Brandl R (1999) Spread of violets in polluted pine forests: morphological and molecular evidence for the ecological importance of interspecific hybridization. Molec Ecol 8:365–377

    Google Scholar 

  • Okada M, Ahmad R, Jasieniuk M (2007) Microsatellite variation points to local landscape plantings as sources of invasive pampas grass (Cortaderia selloana) in California. Molec Ecol 16:4956–4971

    Article  CAS  Google Scholar 

  • Perrins J, Fitter A, Williamson M (1993) Population biology and rates of invasion of three introduced Impatiens species in the British Isles. J Biogeogr 20:33–44

    Article  Google Scholar 

  • Piper CV (1906) Flora of the state of Washington. Contr US Natl Herb 11:282–283

    Google Scholar 

  • Piper CV (1922) The identification of Berberis aquifolium and Berberis repens. Contr US Natl Herb 20:437–451

    Google Scholar 

  • Preston CD, Telfer MG, Arnold HR, Carey PD, Cooper JM, Dines TD, Hill MO, Pearman DA, Roy DB, Smart SM (2002) The changing flora of the UK. DEFRA, London

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pysek P, Prach K, Smilauer P (1995) Relating invasion success to plant traits: An analysis of the Czech alien flora. In: Pysek P, Prach K, Rejmanek M, Wade M (eds) Plant invasions—general aspects and special problems. SPB Academic Publishing, Amsterdam, pp 39–60

    Google Scholar 

  • Rejmanek M (2000) Invasive plants: approaches and predictions. Austral Ecol 25:497–506

    Google Scholar 

  • Rejmanek M (1996) A theory of seed plant invasiveness: The first sketch. Biol Conserv 78:171–181

    Article  Google Scholar 

  • Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecol Lett 9:981–993

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Roß C, Durka W (2006) Isolation and characterization of microsatellite markers in the invasive shrub Mahonia aquifolium (Berberidaceae) and their applicability in related species. Molec Ecol Notes 6:948–950

    Article  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin Version (2.000): a software for population genetics data analysis

  • Soldaat LL, Auge H (1998) Interactions between an invasive plant, Mahonia aquifolium, and a native phytophagous insect, Rhagoletis meigenii. In: Starfinger U, Edwards K, Kowarik I, Williamson M (eds) Plant invasions: ecological mechanisms and human responses. Backhuys Publishers, Leiden, pp 347–360

    Google Scholar 

  • Torrey J, Gray A (1838) Berberidaceae. In: Flora of North America. Oxford University Press, Oxford

  • van de Laar HJ (1975) Mahonia en Mahoberberis. Dendroflora 11(12):19–33

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whittemore AT (1997) Berberis. In: Flora of North America. Oxford University Press, New York, pp 276–286

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354

    Google Scholar 

Download references

Acknowledgments

We thank Verena Schmidt, Christina Belle, Thomas Bunge, Vera Draba, Michael Beckmann, Claudia Paschke and Dorit Raudnitschka for their help in collecting berries and rearing seedlings. Further on, we thank Klaus Hempel and Antje Thondorf for their technical support and Ina Geier and Martina Herrmann for help in the laboratory. We thank all colleagues who gave us comments on invasive Mahonia populations and thanks to all those who sampled seeds, notably Alisa Ramakrishnan, Daniel Jones, Daniel Prati, David W. Inouye, Heather Davis, Jennifer Williams, Mark Schwarzlaender, Mark van Kleunen, Mary Bricker, Petr Pysek, Rosemarie De Clerck-Floate, Ruth Hufbauer, Shanna Carney and Steven Rauth. Many thanks to several botanical gardens and tree nurseries which provided cultivars and many thanks to Hans-Joachim Albrecht, Heribert Reif, Wilfried Müller-Platz and Wout Kromhout for their support and information about Mahonia cultivars. The study was financially supported by the BioTeam program of the German Federal Ministry of Education and Research, project ID 01LM0206.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christel A. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ross, C.A., Auge, H. & Durka, W. Genetic relationships among three native North-American Mahonia species, invasive Mahonia populations from Europe, and commercial cultivars. Plant Syst Evol 275, 219–229 (2008). https://doi.org/10.1007/s00606-008-0066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0066-3

Keywords

Navigation