Skip to main content

Advertisement

Log in

Loss of genetic diversity in isolated populations of an alpine endemic Pilosella alpicola subsp. ullepitschii: effect of long-term vicariance or long-distance dispersal?

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 10 September 2008

Abstract

Pilosellaalpicola subsp. ullepitschii (Asteraceae) is a strictly allogamous, diploid Carpathian endemic. Its distribution range comprises two areas separated by about 600 km. While in the Western Carpathians (Slovakia and Poland) the taxon occurs in numerous sites, only four localities of man-made origin are known from the Eastern and Southern Carpathians (Romania). We used allozyme markers to test two likely possible scenarios for the origin of this disjunction: long distance dispersal and vicariance. Our data indicate a significant loss of genetic diversity in the isolated Eastern and Southern Carpathian populations in following genetic parameters (averaged per region): percentage of polymorphic loci (38.9% found in the Eastern and Southern Carpathians versus 58.3% in the Western Carpathians), allelic richness (1.4 vs. 1.6), expected heterozygosity (0.134 vs. 0.235), mean number of distinguishable multilocus genotypes (4.3 vs. 10.6) and proportion of distinguishable multilocus genotypes (0.34 vs. 0.68). Higher proportion of homozygous loci found in the Eastern and Southern Carpathian populations might indicate a higher rate of inbreeding due to non-random mating. We assume that these genetically depauperate populations have experienced a very strong genetic bottleneck, probably due to a founder effect. Although our data suggest that the long-distance dispersal model is most likely, more discriminate genetic markers should be used to test this further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge, p 447

    Google Scholar 

  • Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. In: Falk DA, Holsinger HE (eds) The genetics and conservation of rare plants. Oxford University Press, Oxford, pp 3–30

    Google Scholar 

  • Beldie A (1940) Observatiuni asupra vegetatiei lemnoase din Muntii Bucegi. Analele ICAS 6:261–271

    Google Scholar 

  • Bräutigam S (1992) Hieracium L. In: Meusel H, Jäger EJ (eds) Vergleichende Chorologie der zentraleuropäischen Flora 3. Gustav Fischer Verlag, Jena, pp 332–558

    Google Scholar 

  • Bruun HH, Scheepens JF, Tyler T (2007) An allozyme study of sexual and vegetative regeneration in Hieracium pilosella L. Canad J Bot 85:10–15

    Article  CAS  Google Scholar 

  • Busch JW (2005) The evolution of self-compatibility in geographically peripheral populations of Leavenworthia alabamica (Brassicaceae). Amer J Bot 92:1503–1512

    Article  Google Scholar 

  • Cain ML, Milligan BG, Strand AE (2000) Long-distance seed dispersal in plant populations. Amer J Bot 87:1217–1227

    Article  Google Scholar 

  • Campbell DH (1942) Continental drift and plant distribution. Science 95:69–70

    Article  PubMed  CAS  Google Scholar 

  • Campbell LG, Husband BC (2005) Impact of clonal growth on effective population size in Hymenoxys herbacea (Asteraceae). Heredity 94:526–532

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B, Charlesworth D, Morgan MT (1990) Genetic loads and estimate of mutation rates in highly inbred plant populations. Nature 347:380–382

    Article  Google Scholar 

  • Charlesworth D, Pannell JR (2001) Mating systems and population genetic structure in the light of coalescent theory. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 73–95

    Google Scholar 

  • Ciocârlan V, Costea M (1997) Completǎri la flora României. Stud Cercet Biol (Cluj) 49:91–95

    Google Scholar 

  • Comes HP, Kadereit JW (1998) The effect of quaternary climatic changes on plant distribution and evolution. Trends Pl Sci 3:432–438

    Article  Google Scholar 

  • Cox CB, Moore PD (2005) Biogeography. An ecological and evolutionary approach, 7th edn. Blackwell, Oxford, p 428

    Google Scholar 

  • Crow JF, Aoki K (1984) Group selection for a polygenic behavioural trait: estimating the degree of population subdivision. Proc Natl Acad USA 81:6073–6077

    Article  CAS  Google Scholar 

  • DeQueiroz A (2005) The resurrection of oceanic dispersal in historical biogeography. Trends Ecol Evol 20:68–73

    Article  Google Scholar 

  • Ehrendorfer F (1976) Genus Galium L. sect. Leptogalium Lange. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Weeb DA (eds) Flora Europaea, vol 4. Cambridge University Press, Cambridge, pp 29–34

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implication for plant conservation. Annual Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Elton ChS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Goudet J (1995) FSTAT: a computer program to calculate F-statistics (version 2.9.3). J Heredity 86:485–486

    Google Scholar 

  • Hamrick JLM, Godt JW (1989) Allozyme diversity in plant species. In: Brown AHD, Clegg MT, Kahler AL, Wier BS (eds) Plant population genetics. Sinauer, Sunderland, pp 43–63

    Google Scholar 

  • Heywood VH (1989) Patterns, extents and modes of invasions by terrestrial plants. In: Drake JA, Mooney HA, Di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson W (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 31–60

    Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hewitt GM (2000) The genetic legacy of the quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet 6:13. v. 3.15, http://ibdws.sdsu.edu/

  • Kapralov MV, Gabrielsen TM, Sarapultsev IE, Brochmann Ch (2006) Genetic enrichment of the arctic clonal plant Saxifraga cernua at its southern periphery via the alpine sexual Saxifraga sibirica. Molec Ecol 15:3401–3411

    Article  CAS  Google Scholar 

  • Kashin AS, Anfalov VE, Demochko YuA (2005) Studying allozyme variation in sexual and apomictic Taraxacum and Pilosella (Asteraceae) populations. Russ J Genet 41:144–154

    Article  CAS  Google Scholar 

  • Kato T (1987) Hybridization between Dianthus superbus var longicalicinus and D. shinanensis evidenced by resolvable esterase isozymes from herbarium specimens. Ann Tsukuba Bot Gard 6:9–18

    Google Scholar 

  • Krahulec F, Krahulcová A, Fehrer J, Bräutigam S, Plačková I, Chrtek J Jr (2004) The Sudetic group of Hieracium subgen. Pilosella from the Krkonoše Mts: a sythetic view. Preslia 76:223–243

    Google Scholar 

  • Kropf M, Kadereit JW, Comes HP (2003) Differential cycles of range contraction and expansion in European high mountain plants during the Late Quaternary: insights from Pritzelago alpina (L.) O. Kuntze (Brassicaceae). Molec Ecol 12:931–949

    Article  CAS  Google Scholar 

  • Kropf M, Comes HP, Kadereit JW (2006) Long-distance dispersal vs vicariance: the origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytol 172:169–184

    Article  PubMed  Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494

    Article  Google Scholar 

  • Lomolino MV, Riddle BR, Brown JH (2005) Biogeography, 3rd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Mirek Z, Piękoś-Mirkowa H (1984) Distribution and habitats of Galium saxatile L. in the Carpathians. Acta Soc Bot Pol 53:419–427

    Google Scholar 

  • Murawski DA, Hamrick JL (1990) Local genetic and clonal structure in the tropical terrestrial bromeliad, Aechmea magdalenae. Amer J Bot 77:1201–1208

    Article  Google Scholar 

  • Nei M (1975) Molecular population genetics and evolution. North-Holland, Amsterdam

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Peckert T, Chrtek J Jr, Plačková I (2005) Genetic variation in agamospermous populations of Hieracium echioides in southern Slovakia and northern Hungary (Danube Basin). Preslia 77:307–315

    Google Scholar 

  • Piękoś-Mirkowa H, Mirek Z (1978) O rzadkich lub dotychczas z obszaru Tatr nie znanych gatunkach roślin naczyniowych. Fragm Flor Geobot 24:363–368

    Google Scholar 

  • Piñeiro R, Fuertes Aguilar J, Munt DD, Nieto Feliner G (2007) Ecology matters: Atlantic-mediterranean disjunction in the sand-dune shrub Armeria pungens (Plumbaginaceae). Molec Ecol 16:2155–2171

    Article  CAS  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raven PH (1972) Plant species disjunctions: a summary. Ann Missouri Bot Gard 59:234–246

    Article  Google Scholar 

  • Raven PH, Axelrod DL (1974) Angiosperm biogeography and past continental movements. Ann Missouri Bot Gard 61:539–673

    Article  Google Scholar 

  • Ridley HN (1930) The dispersal of plants throughout the world. L. Reeve & Co. Ltd., Ashford

    Google Scholar 

  • Sanmartín I, Enghoff H, Ronquist F (2001) Patterns of animal dispersal, vicariance and diversification in the Holarctic. Biol J Linn Soc 73:345–390

    Article  Google Scholar 

  • Schaal BA, Leverich WJ (1996) Molecular variation in isolated plant populations. Pl Spec Biol 11(1):33–40

    Article  Google Scholar 

  • Selander RK (1983) Evolutionary consequences of inbreeding. In: Schonewald-Cox CM, Chambers SM, MacBryde B, Thomas WL (eds) Genetics and conservation. Benjamin/Cummings, San Francisco, pp 201–215

    Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279

    Article  Google Scholar 

  • Stehlik I (2000) Nunataks and peripheral refugia for alpine plants during quaternary glaciation in the middle part of the Alps. Bot Helv 110:25–30

    Google Scholar 

  • Stehlik I (2003) Resistance or emigration? Response of alpine plants to the ice ages. Taxon 52:499–510

    Article  Google Scholar 

  • Thompson JD (1999) Population differentiation in Mediterranean plants: insights into colonization history and the evolution and conservation of endemic species. Heredity 82:229–236

    Article  PubMed  Google Scholar 

  • Tyler T (2005) Patterns of allozyme variation in Nordic Pilosella. Pl Syst Evol 250:133–145

    Article  Google Scholar 

  • Vallejos CE (1983) Enzyme activity staining. In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, part A. Elsevier, Amsterdam, pp 469–516

    Google Scholar 

  • Weir BS (1990) Genetic data analysis. Sinauer Associates, Sunderland

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wendel NF, Weeden JF (1989) Genetics of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Dioscorides Press, Portland, pp 5–45

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–126

    PubMed  CAS  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to mating systems. Evolution 19:395–420

    Article  Google Scholar 

  • Yeh FC, Yang R-C, Boyle T (1999) POPGENE version 1.32. Microsoft Window-based freeware for population genetic analysis. http://www.ualberta.ca/~fyeh/

  • Young A, Boyle T, Brown T (1996) The population genetic consequences of habitat fragmentation for plants. Trends Ecol Evol 11:413–418

    Article  Google Scholar 

  • Zahn KH (1922–1930) Hieracium. In: Ascherson P, Graebner P (eds) Synopsis der mitteleuropäischen Flora 12 (1). Gebrüder Borntraeger, Leipzig

  • Záhradníková K, Šípošová H (1982) Výskyt Galium saxatile L. na Slovensku. Biologia (Bratislava) 37:929–932

    Google Scholar 

Download references

Acknowledgments

We would like to thank Róbert Lakoštík (Bratislava) for valuable help in the field, Ivana Plačková (Průhonice) for assistance in an allozyme laboratory, Róbert Šuvada (Rožňava) for map preparing, and Iva Hodálová (Bratislava), Torbjörn Tyler (Lund) and anonymous reviewer for highly valuable suggestions and comments. We are also grateful to Tim Rich (Cardiff) for language improvement of the manuscript. This study was financially supported by The Slovak Research and Development Agency (No. APVT-51-026404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Šingliarová.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00606-008-0101-4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šingliarová, B., Chrtek, J. & Mráz, P. Loss of genetic diversity in isolated populations of an alpine endemic Pilosella alpicola subsp. ullepitschii: effect of long-term vicariance or long-distance dispersal?. Plant Syst Evol 275, 181–191 (2008). https://doi.org/10.1007/s00606-008-0058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0058-3

Keywords

Navigation