Skip to main content
Log in

Reiterative growth in the complex adaptive architecture of the Paleozoic (Pennsylvanian) filicalean fern Kaplanopteris clavata

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Reiteration is a widespread component of plant growth whose evolutionary importance in ferns is not recognized widely. We introduce and discuss the growth architecture of Kaplanopteris clavata, a fossil filicalean fern from the Pennsylvanian (ca. 305 million yeas old), focusing on types of reiteration exhibited by this species and on the adaptive and phylogenetic significance of reiteration for ferns in general. Kaplanopteris clavata combines two types of reiterative growth where growth modules are borne on fronds: (1) entire fronds derived from primary pinnae, and (2) epiphyllous plantlets. This combination of reiterative pathways, unique among fossil and living ferns, allowed K. clavata to explore ecospace through an opportunistic combination of scrambling, climbing and epiphytic growth. Kaplanopteris clavata underscores the organographic importance of fronds (as opposed to stems) in the adaptive architecture of ferns, emphasizing functional convergences between the different Baupla̋ne of ferns and angiosperms. This unique combination of reiterative pathways is interpreted as a derived condition illustrating the structural and developmental complexity achieved by some filicaleans during the first major evolutionary radiation of leptosporangiate ferns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold CA, Daugherty LH (1964) A fossil dennstaedtioid fern from the Eocene Clarno Formation of Oregon. Contributions from the Museum of Paleontology, Univ. of Michigan 19: 65–88

    Google Scholar 

  • Atger C, Edelin C (1994) Stratégies d’occupation du milieu souterrain par les systèmes racinaires des arbres. Rev Écol Terre et Vie 49: 343–356

    Google Scholar 

  • Bierhorst D W (1971) Morphology of vascular plants. Macmillan, New York

    Google Scholar 

  • Bierhorst DW (1974) Variable expression of the appendicular status of the megaphyll in extant ferns with particular reference to the Hymenophyllaceae. Ann Missouri Bot Gard 61: 408–426

    Article  Google Scholar 

  • Delevoryas T, Morgan J (1954) A further investigation of the morphology of Anachoropteris clavata. Am J Bot 41: 192–198

    Article  Google Scholar 

  • DiMichele WA, Phillips TL (2002) The ecology of Paleozoic ferns. Rev Palaeobot Palynol 119: 143–159

    Article  Google Scholar 

  • Galtier J, Holmes JC (1982) New observations on the branching of Carboniferous ferns and pteridosperms. Ann Bot 49: 737–746

    Google Scholar 

  • Galtier J, Phillips TL (1996) Structure and evolutionary significance of Palaeozoic ferns. In: Camus JM, Gibby M, Johns RJ (eds) Pteridology in perspective. Royal Botanic Gardens, Kew, pp 417–433

    Google Scholar 

  • Gay H (1993) The architecture of a dimorphic clonal fern, Lomagramma guianensis (Aublet) Ching (Dryopteridaceae). Bot J Linn Soc 111: 343–358

    Article  Google Scholar 

  • Gianoli E (2004) Evolution of a climbing habit promotes diversification in flowering plants. Proc Roy Soc Lond B 271: 2011–2015

    Article  Google Scholar 

  • Graham R (1935) Pennsylvanian flora of Illinois as revealed in coal balls. II. Bot Gaz 97: 156–168

    Article  Google Scholar 

  • Greb SF, Di Michele WA, Gastaldo RA (2006) Evolution and importance of wetlands in earth history. In: Greb SF, DiMichele WA (eds) Wetlands through time. Geol Soc Amer Spec Paper 399: 1–40

  • Hallé F (1999) Ecology of reiteration in tropical trees. In: Kurmann MH, Hemsley AR (eds) The evolution of plant architecture. Royal Botanic Gardens, Kew, pp 93–107

    Google Scholar 

  • Hallé F (2001) Branching in plants. In: Fleury V, Gouyet J-F, Leonetti M (eds) Branching in nature. Springer, Berlin, pp 23–40

    Google Scholar 

  • Hallé F, Oldeman RAA, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, Berlin

    Google Scholar 

  • Hébant-Mauri R (1990) The branching of Trichomanes proliferum (Hymenophyllaceae). Can J Bot 68: 1091–1097

    Google Scholar 

  • Hébant-Mauri R, Gay H (1993) Morphogenesis and its relation to architecture in the dimorphic clonal fern Lomagramma guianensis (Aublet) Ching (Dryopteridaceae). Bot J Linn Soc 112: 257–276

    Article  Google Scholar 

  • Holmes J (1984) Morphology and evolution of Botryopteris, a Carboniferous age fern. 4. Branching patterns of the European species B. hirsuta and B. ramosa. Description of B. scottii n. sp. Palaeontographica B 191: 1–28

    Google Scholar 

  • Holmes J (1989) Anomalous branching patterns in some fossil Filicales: implications in the evolution of the megaphyll and the lateral branch, habit and growth pattern. Pl Syst Evol 165: 137–158

    Article  Google Scholar 

  • Holttum RE (1957) Morphology, growth-habit, and classification of the family Gleicheniaceae. Phytomorphology 7: 168–184

    Google Scholar 

  • Joy KW, Willis AJ, Lacey WS (1956) A rapid cellulose peel technique in palaeobotany. Ann Bot 20: 635–637

    Google Scholar 

  • Kaplan DR (1977) Morphological status of the shoot systems of Psilotaceae. Brittonia 29: 30–53

    Article  Google Scholar 

  • Kaplan DR, Groff PA (1995) Developmental themes in vascular plants: functional and evolutionary significance. In: Hoch PC, Stephenson AD (eds) Experimental and molecular approaches to plant biosystematics. Monographs in Systematic Botany. Missouri Botanical Garden, St Louis, pp 111–145

    Google Scholar 

  • Long AG (1943) On the occurrence of buds on the leaves of Botryopteris hirsuta Will. Ann Bot 7: 133–146

    Google Scholar 

  • Mueller RJ (1983) Indeterminate growth and ramification of the climbing leaves of Lygodium japonicum (Schizaeaceae). Amer J Bot 70: 682–690

    Article  Google Scholar 

  • Oldeman RAA (1974) L’architecture de la forêt Guyanaise, memoire 73. Office de la Recherche Scientifique et Technique Outre-Mer, Paris

    Google Scholar 

  • Page CN (2002) Ecological strategies in fern evolution: a neopteridological overview. Rev Palaeobot Palynol 119: 1–33

    Article  Google Scholar 

  • Phillips TL (1974) Evolution of vegetative morphology in coenopterid ferns. Ann Missouri Bot Gard 61: 427–461

    Article  Google Scholar 

  • Phillips TL (1980) Stratigraphic and geographic occurrences of permineralized coal-swamp plants – Upper Carboniferous of North America and Europe. In: Dilcher D L, Taylor T N (eds) Biostratigraphy of fossil plants. Successional and paleoecological analyses. Dowden, Hutchinson & Ross, Stroudsbury, pp 25–92

    Google Scholar 

  • Rößler R (2000) The late Palaeozoic tree fern Psaronius - an ecosystem unto itself. Rev Palaeobot Palynol 108: 55–74

    Article  Google Scholar 

  • Rothwell GW (1987) Complex Paleozoic Filicales in the evolutionary radiation of ferns. Amer J Bot 74: 458–461

    Article  Google Scholar 

  • Rothwell GW (1995) The fossil history of branching: implications for the phylogeny of land plants. In: Hoch PC, Stephenson AD (eds) Experimental and molecular approaches to plant biosystematics. Monographs in Systematic Botany. Missouri Botanical Garden, St Louis, pp 71–86

    Google Scholar 

  • Rothwell GW (1996) Pteridophytic evolution: an often underappreciated phytological success story. Rev Palaeobot Palynol 90:209–222

    Article  Google Scholar 

  • Rothwell GW (1999) Fossils and ferns in the resolution of land plant phylogeny. Bot Rev 65: 188–218

    Article  Google Scholar 

  • Rothwell GW, Good CW (2000) Reconstructing the Pennsylvanian-age filicalean fern Botryopteris tridentata (Felix) Scott. Int J Pl Sci 161: 495–507

    Article  Google Scholar 

  • Smoot EL (1985) Phloem anatomy of the Carboniferous coenopterid ferns Anachoropteris and Ankyropteris. Amer J Bot 72: 191–208

    Article  Google Scholar 

  • Tiffney BH, Niklas KJ (1985) Clonal growth in land plants: a paleobotanical perspective. In: Jackson JBC, Buss LW, Cook RE (eds) Population biology and evolution of clonal organisms. Yale University Press, London, pp. 35–66

    Google Scholar 

  • Tomescu AMF, Rothwell GW, Trivett ML (2006) Kaplanopteridaceae fam. nov., additional diversity in the initial radiation of filicalean ferns. Int J Pl Sci 167: 615–630

    Article  Google Scholar 

  • Tomlinson PB (1983) Tree architecture: new approaches help to define the elusive biological property of tree form. Amer Sci 71: 141–149

    PubMed  CAS  Google Scholar 

  • Trewavas A (2005) Green plants as intelligent organisms. Trends Pl Sci 10: 413–419

    Article  CAS  Google Scholar 

  • Trivett ML, Rothwell GW (1988) Modelling the growth architecture of fossil plants: a Paleozoic filicalean fern. Evol Trends Pl 2: 25–29

    Google Scholar 

  • Troop JE, Mickel JT (1968) Petiolar shoots in the dennstaedtioid and related ferns. Amer Fern J 58: 64–70

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. F. Tomescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomescu, A.M.F., Rothwell, G.W. & Trivett, M.L. Reiterative growth in the complex adaptive architecture of the Paleozoic (Pennsylvanian) filicalean fern Kaplanopteris clavata . Plant Syst Evol 270, 209–216 (2008). https://doi.org/10.1007/s00606-007-0599-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-007-0599-x

Keywords

Navigation