Skip to main content
Log in

Weakly tame systems, their characterizations and applications

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We explore the notion of discrete spectrum and its various characterizations for ergodic measure-preserving actions of an amenable group on a compact metric space. We introduce a notion of ‘weak-tameness’, which is a measure theoretic version of a notion of ‘tameness’ introduced by E. Glasner, based on the work of A. Köhler, and characterize such topological dynamical systems as systems for which every invariant measure has a discrete spectrum. Using the work of M. Talagrand, we also characterize weakly tame as well as tame systems in terms of the notion of ‘witness of irregularity’ which is based on ‘up-crossings’. Then we establish that ‘strong Veech systems’ are tame. In particular, for any countable amenable group T, the flow on the orbit closure of the translates of a ‘Veech function’ \(f \in {\mathbb {K}}(T)\) is tame. Thus Sarnak’s Möbius orthogonality conjecture holds for this flow and as a consequence, we obtain an improvement of Motohashi–Ramachandra theorem of 1976 on the Mertens function in short intervals. We further improve Motohashi–Ramachandra’s bound to 1/2 under the Chowla conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See Sect. 6. for more details.

  2. See Sect. 6. for more details.

  3. Notice here that our proof is valid for any group action on compact metric space.

References

  1. Abdalaoui, e. H. el: On Veech’s proof of Sarnak’s theorem on the Möbius flow. Preprint, (2017). arXiv:1711.06326 [math.DS]

  2. Abdalaoui, e. H. el, Nerurkar, M.: Sarnak’s Möbius disjointness for dynamical systems with singular spectrum and dissection of Möbius flow. arXiv:2006.07646 [math.DS]

  3. Abdalaoui, e.H.el, Lemańczyk, M., de la Rue, T.: A dynamical point of view on the set of B-free integers. Int. Math. Res. Not. IMRN 16, 7258–7286 (2015)

  4. Auslander, J.: Minimal Flows and Their Extensions, North-Holland Mathematics Studies, vol. 153. Elsevier Science Publishers, Amstedram (1988)

    Google Scholar 

  5. Auslander, J., Greschonig, G., Nagar, A.: Reflections on equicontinuity. Proc. AMS 142, 3129–3137 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Bourgain, J.: Compact sets of first Baire class. Bull. Soc. Math. Belg. 29(2), 135–143 (1977)

    MathSciNet  MATH  Google Scholar 

  7. Bourgain, J.: Double recurrence and almost sure convergence. J. Reine Angew. Math. 404, 140–161 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Cellarosi, F., Sinai, Y.G.: Ergodic properties of square-free numbers. J. Eur. Math. Soc. 015(4), 1343–1374 (2013). arXiv:1112.4691

    MathSciNet  MATH  Google Scholar 

  9. Davenport, H.: On some infinite series involving arithmetical functions, II. Q. J. Math. Oxf. 8, 313–320 (1937)

    MATH  Google Scholar 

  10. Downarowicz, T., Glasner, E.: Isometric extensions and applications. Topol. Methods Nonlinear Anal. 48(1), 321–338 (2016). https://doi.org/10.12775/TMNA.2016.050

    Article  MathSciNet  MATH  Google Scholar 

  11. Ellis, R.: Lectures in Topological Dynamics. Benjamin, New York (1969)

    MATH  Google Scholar 

  12. Ellis, R., Nerurkar, M.: Enveloping Semigroup in Ergodic Theory and a Proof of Moore’s Ergodicity Theorem. Lecture Notes in Mathematics 1342, pp. 172–179. Springer, Berlin (1987)

    Google Scholar 

  13. Ellis, R., Nerurkar, M.: Weakly almost periodic flows. Trans. A.M.S. 313(1), 103–119 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Erdős, P.: On the difference of consecutive terms of sequences defined by divisibility properties. Acta Arith. 12, 175–182 (1966/1967)

  15. Frantzikinakis, N., Host, B.: The logarithmic Sarnak conjecture for ergodic weights. Ann. Math. 187, 869–931 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Fremelin, D.: Measure theory. https://www1.essex.ac.uk/maths/people/fremlin/chap46.pdf

  17. Fuhrmann, G., Groger, M., Lenz, D.: The structure of mean equicontinuous group actions. arXiv:1812.10219 [math.DS]

  18. Fuhrmann, G., Kwietniak, D.: On tameness of almost automorphic dynamical systems for general groups. arXiv:1902.10780 [math.DS]

  19. Glasner, S.: On tame dynamical systems. Colloq. Math. 105, 283–295 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Glasner, E., Megrelishvili, M.: Representations of dynamical systems on Banach spaces. Recent Prog. Gen. Topol. II I, 399–470 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Glasner, E., Megrelishvili, M.: Hereditarily non-sensitive dynamical systems and linear representations. Colloq. Math. 104(2), 223–283 (2006)

    MathSciNet  MATH  Google Scholar 

  22. Glasner, E., Megrelishvili, M.: Representations of dynamical systems on Banach spaces not containing \(l^1\). Trans. Am. Math. Soc. 364(12), 6395–6424 (2012)

    MATH  Google Scholar 

  23. Garcia-Ramos, F.: Weak forms of topological and measure theoretical equicontinuity: relationship with discrete spectrum and sequence entropy. Ergod. Theory Dyn. Syst. 37, 1211–1237 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Hua, L.-K.: Some results in the additive prime number theory. Q. J. Math. 9(1938), 68–80 (1938)

    MathSciNet  MATH  Google Scholar 

  25. Huang, W., Wang, Z., Ye, X.: Measure complexity and Möbius disjointness. Adv. Math. 347, 827–858 (2019)

    MathSciNet  MATH  Google Scholar 

  26. Huang, W., Li, J., Thouvenot, J.-P., Xu, L., Ye, X.D.: Bounded complexity, mean equicontinuity and discrete spectrum. Ergod. Theory Dyn. Syst. (2018). https://doi.org/10.1017/etds.2018.57

    Article  MATH  Google Scholar 

  27. Hajela, D., Smith, B.: On the Maximum of an Exponential Sum of the Möbius Function. Number Theory (New York, 1984–1985), Lecture Notes in Mathematics, 1240, pp. 145–164. Springer, Berlin (1987)

    Google Scholar 

  28. Kerr, D., Li, H.: Independence in topological and C*-dynamics. Math. Ann. 338, 869–926 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Köhler, A.: Enveloping semigroups for flows. Proc. R. Ir. Acad. 95, 179–191 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Kushnirenko, A.G.: On metric invariants of entropy type. Russ. Math. Surv. 22(5), 53–61 (1967)

    MathSciNet  MATH  Google Scholar 

  31. Lindenstrauss, E.: Pointwise theorems for amenable groups. Electron. Res. Announc. A.M.S. 5, 82–90 (1999)

    MathSciNet  MATH  Google Scholar 

  32. Liu, J., Zhan, T.: Estimation of exponential sums over primes in short intervals I. Monatshefte Math. 127, 27–41 (1999)

    MathSciNet  MATH  Google Scholar 

  33. Matomäki, K., Radziwiłlłl, M., Tao, T.: An averaged form of Chowla’s conjecture. Algebra Number Theory 9(9), 2167–2196 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Matomäki, K., Radziwił, M.: Multiplicative functions in short intervals. Ann. Math. 183, 1015–1056 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Matomäki, K., Teräväinen, J.: On the Möbius function in all short intervals. arXiv:1911.09076 [math.NT]

  36. Mirsky, L.: Arithmetical pattern problems relating to divisibility by \(r\)th powers. Proc. Lond. Math. Soc.(2) 50, 497–508 (1949)

    MATH  Google Scholar 

  37. Mirsky, L.: Summation formulae involving arithmetic functions. Duke Math. J. 16, 261–272 (1949)

    MathSciNet  MATH  Google Scholar 

  38. Mirsky, L.: Note on an asymptotic formula connected with \(r\)-free integers. Q. J. Math. Oxf. Ser. 18, 178–182 (1947)

    MathSciNet  MATH  Google Scholar 

  39. Motohashi, Y.: On the sums of the Möbius function in a short segment. Proc. Jpn. Acad. 52(9), 477–479 (1976)

    MATH  Google Scholar 

  40. Namioka, I.: Ellis groups and compact right topological groups. In: Conference in Modern Analysis and Probability (New Haven, Connecticut, 1982), Contemporary Mathematics, vol. 26, pp. 295–300. American Mathematical Society, Providence, RI (1984)

  41. Polo, F.: Sensitive dependence on initial condition and chaotic group actions. Proc. Am. Math. Soc. 138(8), 2815–2826 (2010)

    MathSciNet  MATH  Google Scholar 

  42. Ramachandra, K.: Some problems of analytic number theory. Acta. Arith. XXX I, 313–324 (1976)

    MathSciNet  MATH  Google Scholar 

  43. Rauzy, G.: Propriétés statistiques de suites arithmétiques. Le Mathématicien, No. 15. Collection SUP. Presses Universitaires de France, Paris (1976)

    MATH  Google Scholar 

  44. Sarnak, P.: Möbius randomness and dynamics. Not. S. Afr. Math. Soc. 43(2), 89–97 (2012)

    MathSciNet  MATH  Google Scholar 

  45. Sarnak, P.: https://www.youtube.com/watch?v=nRDOucHOKP0 &t=3743s

  46. Sarnak, P.: Randomness in number theory. Slides from the Mahler Lectures 2011. Asia Pac. Math. Newsl. 2(3), 15–19 (2012)

    MathSciNet  Google Scholar 

  47. Scarpellini, B.: Stability properties of flows with pure point spectrum. J. Lond. Math. Soc. 2(26), 451–464 (1982)

    MathSciNet  MATH  Google Scholar 

  48. Talagrand, M.: The Glivenko–Cantelli problem. Ann. Probab. 15(3), 837–870 (1987)

    MathSciNet  MATH  Google Scholar 

  49. Talagrand, M.: The Glivenko–Cantelli problem, ten years later. J. Theor. Probab. 9(2), 371–384 (1996)

    MathSciNet  MATH  Google Scholar 

  50. Thouvenot, J.-P.: Une classe de systèmes pour laquelle la conjecture de Pinsker est vraie. Isr. J. Math. 21, 208–214 (1975)

    MathSciNet  MATH  Google Scholar 

  51. Todorčević, S.: Topics in Topology: Lecture Notes in Mathematics 1652. Springer, Berlin (1997)

    Google Scholar 

  52. van Handel, R.: The universal Glivenko–Cantelli property. Probab. Theory Relat. Fields 155(3–4), 911–934 (2013)

    MathSciNet  MATH  Google Scholar 

  53. Veech, W.: A fixed point theorem free approach to weak almost periodicity. T.A.M.S. 177, 353–362 (1973)

    MathSciNet  MATH  Google Scholar 

  54. Veech, W.: Möbius orthogonality for generalized Morse-Kakutani flows. Am. J. Math. 139(5), 1157–1203 (2017)

    MATH  Google Scholar 

  55. Vershik, A., Zatitskiy, P., Petrov, F.: Geometry and dynamics of admissible metrics in measure spaces. Cent. Eur. J. Math. 11(3), 379–400 (2013)

    MathSciNet  MATH  Google Scholar 

  56. Zhan, T.: On the representation of large odd integers as sum of three almost equal primes. Acta Math. Sin. New Ser. 7, 159–272 (1991)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to express their thanks to Ahmed Bouziad for a discussion on the subject. We also thank Eli Glasner and M. Megrelishvili for their comments and criticism which improved the earlier version of the paper. The first author would like to thank Igor Shparlinski for a discussion on the subject. He gratefully thanks the Rutgers University and the Institute of Mathematical Sciences at Chennai for their hospitality. Both authors would like to express their gratitude to the Vivekananda Institute in Calcutta for their invitation and hospitality where part of this work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to el Houcein el Abdalaoui.

Additional information

Communicated by Shrikrishna G Dani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix. On the average Chowla of order two

Appendix. On the average Chowla of order two

In this short note, by applying a observation of Bourgain observation, we present a simple proof of Matomäki-Radziwiłł-Tao theorem on the average Chowla of order two [33], based on Davenport theorem. In their inequality H is allowed to grow very slowly with respect to X. Here, for \(H=X\) we obtain a bound for the speed of convergence. Notice that this is the only ingredient needed for the proof of the validity of Sarnak conjecture for systems with discrete spectrum in Huang-Wang-Ye’s result.

Theorem .12

Let \(\varvec{\nu }\) be a Möbius or Liouville function. Then, for any \(N \ge 2\),

$$\begin{aligned}&\frac{1}{N}\sum _{m=1}^{N}\Big |\frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n) \varvec{\nu }(n+m)\Big | \le \frac{C}{\log (N)^{\kappa }}. \end{aligned}$$

where C is some positive constant.

Proof

By Cauchy–Schwarz inequality, we have

$$\begin{aligned}&\frac{1}{N}\sum _{m=1}^{N}\Big |\frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n) \varvec{\nu }(n+m)\Big | \le \left( \frac{1}{N}\sum _{m=1}^{N}\left| \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n) \varvec{\nu }(n+m)\right| ^2\right) ^{\frac{1}{2}}, \end{aligned}$$

and by Bourgain’s observation [7, equations (2.5) and (2.7)], we have

$$\begin{aligned}&\sum _{m=1}^{N}\left| \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n)\varvec{\nu }(n+m) \lambda ^{n+m}\right| ^2 \nonumber \\&\quad = \sum _{m=1}^{N}\left| \int _{{\mathbb {T}}}\left( \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n)z^{-n}\right) \left( \sum _{p=1}^{2N} \varvec{\nu }(p) {\left( \lambda z\right) }^p\right) z^{-m} dz\right| ^2 \nonumber \\&\quad \le \int _{{\mathbb {T}}}\left| \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n) z^{-n}\right| ^2\left| \sum _{p=1}^{2N} \varvec{\nu }(p) {\big (\lambda z\big )}^p\right| ^2 dz\\&\quad \le \sup _{z \in {\mathbb {T}}}\left( \left| \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n) z^{-n}\right| \right) ^2 \int _{{\mathbb {T}}}\left| \sum _{p=1}^{2N} \varvec{\nu }(p) {\big (\lambda z\big )}^p\right| ^2 dz. \end{aligned}$$

The inequality (1.3) is due to Parseval inequality. Indeed, by putting

$$\begin{aligned} \Phi _N(z)=\left( \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n) z^{-n}\right) \left( \sum _{p=1}^{2N} \varvec{\nu }(p) {\big (\lambda z\big )}^p \right) . \end{aligned}$$

We see that for any \(m \in {\mathbb {Z}}\),

$$\begin{aligned} \widehat{\Phi _N}(m) =\int _{{\mathbb {T}}}\left( \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n)z^{-n}\right) \left( \sum _{p=1}^{2N} \varvec{\nu }(p) {\big (\lambda .z\big )}^p\right) z^{-m} dz. \end{aligned}$$

and

$$\begin{aligned} \sum _{m=1}^{N}\left| \int _{{\mathbb {T}}}\left( \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n) z^{-n}\right) \left( \sum _{p=1}^{2N} \varvec{\nu }(p) {\big (\lambda .z\big )}^p\right) z^{-m} dz\right| ^2= & {} \sum _{m=1}^{N}\left| \widehat{\Phi _N}(m)\right| ^2\\\le & {} \int _{{\mathbb {T}}} |\Phi _N(z)|^2 dz. \end{aligned}$$

Now, by appealing to Davenport Theorem, we get

$$\begin{aligned}&\sum _{m=1}^{N}\left| \frac{1}{N}\sum _{n=1}^{N} \varvec{\nu }(n)\varvec{\nu }(n+m) \lambda ^{n+m}\right| ^2 \le \frac{C_\epsilon }{\log (N)^{\epsilon }} \end{aligned}$$

From this, we obtain the desired inequality and the proof is complete.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

el Abdalaoui, e.H., Nerurkar, M. Weakly tame systems, their characterizations and applications. Monatsh Math 201, 725–769 (2023). https://doi.org/10.1007/s00605-023-01861-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-023-01861-y

Keywords

Mathematics Subject Classification

Navigation