Skip to main content
Log in

Stratified equatorial flows in the \(\beta \)-plane approximation with a free surface

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We investigate the exact solutions to the governing equations for the equatorial flows with the associated free surface and rigid bottom boundary conditions in the \(\beta \)-plane approximation which incorporates two considerations of the density stratification. Compared to the spherical coordinates and the cylindrical coordinates, the employment of the \(\beta \)-plane approximation admits that the density can be provided generally. Utilizing the implicit theorem, we present the Bernoulli relation between the pressure imposed on the free surface and the resulting distortion of the surface and we obtain that this relation exhibits the expected monotonicity properties. Finally, we prove that certain flows established by the exact solutions are stable via the short-wavelength stability method and the specific assumption of the density distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bayly, B.J.: Three-dimensional instabilities in qusi-two-dimensional inviscid flows. In: Nonlinear Wave Interactions in Fluids, pp. 71–77. American Society of Mechanical Engineers, New York (1987)

  2. Berger, M.S.: Nonlinearity and Functional Analysis. Academic Press, New York (1977)

    MATH  Google Scholar 

  3. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical trapped waves at arbitrary latitude. Discrete Continu. Dyn. Syst. 39, 4399–4414 (2019)

    Article  MATH  Google Scholar 

  4. Chu, J., Ionescu-Kruse, D., Yang, Y.: Exact solution and instability for geophysical waves with centripetal forces and at arbitrary latitude. J. Math. Fluid Mech. 21, 16 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, A.: An exact solution for equatorially trapped waves. J. Geophys. Res. Oceans 117, C05029 (2012)

  6. Constantin, A., Germain, P.: Instability of some equatorially trapped waves. J. Geophys. Res. Oceans 118, 2802–2810 (2013)

    Article  Google Scholar 

  7. Constantin, A.: Some three-dimensional nonlinear equatorial flows. J. Phys. Oceanogr. 43, 165–175 (2013)

    Article  Google Scholar 

  8. Constantin, A., Johnson, R.S.: The dynamics of waves interacting with the equatorial undercurrent. Geophys. Astrophys. Fluid Dyn. 109, 311–358 (2015)

    Article  MathSciNet  Google Scholar 

  9. Constantin, A., Johnson, R.S.: An exact, steady, purely azimuthal equatorial flow with a free surface. J. Phys. Oceanogr. 46, 1417–1447 (2016)

    Google Scholar 

  10. Constantin, A., Johnson, R.S.: A nonlinear, three-dimensional model for ocean flows, motivated by some observations of the Pacific equatorial undercurrent and thermocline. Phys. Fluids 29, 056604 (2017)

    Article  Google Scholar 

  11. Constantin, A., Ivanov, R.I.: Equatorial wave–current interactions. Commun. Math. Phys. 370, 1–48 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin, A., Johnson, R.S.: On the nonlinear, three-dimensional structure of equatorial oceanic flows. J. Phys. Oceanogr. 49, 2029–2042 (2019)

    Article  Google Scholar 

  13. Friedlander, S., Vishik, M.M.: Instability criteria for the flow of an inviscid incompressible fluid. Phys. Rev. Lett. 66, 2204–2206 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Henry, D.: An exact solution for equatorial geophysical water waves with an underlying current. Eur. J. Mech. B/Fluids 38, 18–21 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henry, D.: On three-dimensional Gerstner-like equatorial water waves. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 16 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Henry, D., Martin, C.I.: Exact, purely azimuthal stratified equatorial flows in cylindrical coordinates. Dyn. Part. Differ. Equ. 15, 337–349 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  17. Henry, D.: On nonlinearity in three-dimensional equatorial flows. J. Nonlinear Math. Phys. 25, 351–357 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Henry, D., Martin, C.I.: Free-surface, purely azimuthal equatorial flows in spherical coordinates with stratification. J. Differ. Equ. 266, 6788–6808 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  19. Henry, D., Martin, C.I.: Exact, free-surface equatorial flows with general stratification in spherical coordinates. Arch. Rational Mech. Anal. 233, 497–512 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Henry, D., Martin, C.I.: Stratified equatorial flows in cylindrical coordinates. Nonlinearity 33, 3889–3904 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(f\)-plane approximation. Nonlinear Anal. Real World Appl. 24, 190–195 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ionescu-Kruse, D.: An exact solution for geophysical edge waves in the \(\beta \)-plane approximation. J. Math. Fluid Mech. 17, 699–706 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ionescu-Kruse, D., Martin, C.I.: Local stability for an exact steady purely azimuthal equatorial flow. J. Math. Fluid Mech. 20, 7–34 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Johnson, G.C., McPhaden, M.J., Firing, E.: Equatorial pacific ocean horizontal velocity, divergence, and upwelling. J. Phys. Oceanogr. 31, 839–849 (2001)

    Article  Google Scholar 

  25. Knauss, J.A., King, J.E.: Observations of the Pacific equatorial undercurrent. Nature 182, 601–602 (1958)

    Article  Google Scholar 

  26. Leblanc, S.: Local stability of Gerstner’s waves. J. Fluid Mech. 506, 245–254 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lifschitz, A., Hameiri, E.: Local stability conditions in fluid dynamics. Phys. Fluids 3, 2644–2651 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. McCreary, J.P.: Modeling equatorial ocean circulation. Annu. Rev. Fluid Mech. 17, 359–409 (1985)

    Article  MATH  Google Scholar 

  29. Miao, F., Fečkan, M., Wang, J.: Constant vorticity water flows in the modified equatorial \(\beta \)-plane approximation. Monatshefte für Mathematik (2021). https://doi.org/10.1007/s00605-021-01571-3

    Article  Google Scholar 

  30. Miao, F., Fečkan, M., Wang, J.: A new approach to study constant vorticity water flows in the \(\beta \)-plane approximation with centripetal forces. Dyn. Part. Differ. Equ. 18, 199–210 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. Talley, L.D., Pickard, G.L., Emery, W.J., Swift, J.H.: Descriptive Physical Oceanography: An Introduction. Elsevier (2011)

  32. Wang, J., Fečkan, M., Zhang, W.: On the nonlocal boundary value problem of geophysical fluid flows, Zeitschrift für angewandte Mathematik und Physik 72 Art. 27 (2021)

  33. Zhang, W., Wang, J., Fečkan, M.: Existence and uniqueness results for a second order differential equation for the ocean flow in arctic gyres. Monatshefte für Mathematik 193, 177–192 (2020)

  34. Zhang, W., Fečkan, M., Wang, J.: Positive solutions to integral boundary value problems from geophysical fluid flows. Monatshefte für Mathematik 193, 901–925 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their careful reading of the manuscript and their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Additional information

Communicated by Adrian Constantin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is partially supported by the National Natural Science Foundation of China (12161015), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Major Research Project of Innovative Group in Guizhou Education Department ([2018]012), Guizhou Data Driven Modeling Learning and Optimization Innovation Team ([2020]5016) the Slovak Research and Development Agency under the Contract No. APVV-18-0308, and by the Slovak Grant Agency VEGA Nos. 1/0358/20 and 2/0127/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, F., Fečkan, M. & Wang, J. Stratified equatorial flows in the \(\beta \)-plane approximation with a free surface. Monatsh Math 200, 315–334 (2023). https://doi.org/10.1007/s00605-022-01685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-022-01685-2

Keywords

Mathematics Subject Classification

Navigation