Skip to main content
Log in

The Gabor wave front set in spaces of ultradifferentiable functions

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the spaces of ultradifferentiable functions \(\mathcal {S}_\omega \) as introduced by Björck (and its dual \(\mathcal {S}'_\omega \)) and we use time-frequency analysis to define a suitable wave front set in this setting and obtain several applications: global regularity properties of pseudodifferential operators of infinite order and the micro-pseudolocal behaviour of partial differential operators with polynomial coefficients and of localization operators with symbols of exponential growth. Moreover, we prove that the new wave front set, defined in terms of the Gabor transform, can be described using only Gabor frames. Finally, some examples show the convenience of the use of weight functions to describe more precisely the global regularity of (ultra)distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Albanese, A., Jornet, D., Oliaro, A.: Quasianalytic wave front sets for solutions of linear partial differential operators. Integr. Equ. Oper. Theory 66, 153–181 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albanese, A., Jornet, D., Oliaro, A.: Wave front sets for ultradistribution solutions of linear partial differential operators with coefficients in non-quasianalytic classes. Math. Nachr. 285(4), 411–425 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björck, G.: Linear partial differential operators and generalized distributions. Ark. Mat. 6(21), 351–407 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boiti, C., Gallucci, E.: The overdetermined Cauchy problem for \(\omega \)-ultradifferentiable functions. Manuscripta Math. 155(3-4), 419–448 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boiti, C., Jornet, D.: A simple proof of Kotake–Narasimhan theorem in some classes of ultradifferentiable functions. J. Pseudo-Differ. Oper. Appl. 8(2), 297–317 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boiti, C., Jornet, D.: A characterization of the wave front set defined by the iterates of an operator with constant coefficients. Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Math. RACSAM 111(3), 891–919 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Boiti, C., Jornet, D., Juan-Huguet, J.: Wave front sets with respect to the iterates of an operator with constant coefficients. Abstr. Appl. Anal. 2014, 1–17 (2014). https://doi.org/10.1155/2014/438716

    Article  MathSciNet  Google Scholar 

  8. Boiti, C., Jornet, D., Oliaro, A.: Regularity of partial differential operators in ultradifferentiable spaces and Wigner type transforms. J. Math. Anal. Appl. 446, 920–944 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonet, J., Meise, R., Melikhov, S.N.: A comparison of two different ways to define classes of ultradifferentiable functions. Bull. Belg. Math. Soc. Simon Stevin 14(3), 425–444 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization. Theory and Examples, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2006)

    Google Scholar 

  11. Braun, R.W., Meise, R., Taylor, B.A.: Ultradifferentiable functions and Fourier analysis. Result. Math. 17, 206–237 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cappiello, M., Schulz, R.: Microlocal analysis of quasianalytic Gelfand–Shilov type ultradistributions. Complex Var. Elliptic Equ. 61(4), 538–561 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carypis, E., Wahlberg, P.: Propagation of exponential phase space singularities for Schrödinger equations with quadratic Hamiltonians. J. Fourier Anal. Appl. 23(3), 530–571 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Christensen, O.: An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Springer, Berlin (2016)

    MATH  Google Scholar 

  15. Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators on non-quasianalytic classes of Beurling type. Studia Math. 167(2), 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fernández, C., Galbis, A., Jornet, D.: Pseudodifferential operators of Beurling type and the wave front set. J. Math. Anal. Appl. 340(2), 1153–1170 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fieker, C.: \(P\)-Konvexität und \(\omega \)-Hypoelliptizität für partielle Differentialoperatoren mit konstanten Koeffizienten. Diplomarbeit, Mathematischen Institut der Heinrich-Heine-Universität Düsseldorf (1993)

  18. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)

    Book  MATH  Google Scholar 

  19. Gröchenig, K., Zimmermann, G.: Spaces of test functions via the STFT. J. Funct. Spaces Appl. 2(1), 25–53 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Heil, C.: A Basis Theory Primer. Applied and Numerical Harmonic Analysis. Springer, New York (2011)

    MATH  Google Scholar 

  21. Hörmander, L.: Fourier integral operators. Acta Math. 127(1), 79–183 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hörmander, L.: Quadratic hyperbolic operators. In: Cattabriga, L., Rodino, L. (eds.) Microlocal Analysis and Applications. Lecture Notes in Mathematics, pp. 118–160. Springer, Berlin (1991)

    Chapter  Google Scholar 

  23. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. I. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  24. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. II. Springer-Verlag, Berlin (1983)

    MATH  Google Scholar 

  25. Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III. Springer-Verlag, Berlin (1985)

    MATH  Google Scholar 

  26. Janssen, A.J.E.M.: Duality and biorthogonality for Weyl–Heisenberg frames. J. Fourier Anal. Appl. 1(4), 403–436 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Langenbruch, M.: Hermite functions and weighted spaces of generalized functions. Manuscripta Math. 119(3), 269–285 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Meise, R., Vogt, D.: Introduction to Functional Analysis. Oxford Science Publications, Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  29. Nakamura, S.: Propagation of the homogeneous wave front set for Schrödinger equations. Duke Math. J. 126, 349–367 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nicola, F., Rodino, L.: Global Pseudo-Differential Calculus on Euclidean Spaces. Springer, Basel (2010)

    Book  MATH  Google Scholar 

  31. Pilipović, S.: Tempered ultradistributions. Boll. U.M.I. B (7) 2(2), 235-251 (1988)

  32. Prangoski, B.: Pseudodifferential operators of infinite order in spaces of tempered ultradistributions. J. Pseudo-Differ. Oper. Appl. 4(4), 495–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pilipović, S., Prangoski, B.: Anti-Wick and Weyl quantization on ultradistribution spaces. J. Math. Pures Appl. 103(2), 472–503 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Rodino, L.: Linear Partial Differential Operators and Gevrey Spaces. World Scientific Publishing Co., Inc., River Edge, NJ (1993)

    Book  MATH  Google Scholar 

  35. Rodino, L., Wahlberg, P.: The Gabor wave front set. Monatsh. Math. 173, 625–655 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schulz, R., Wahlberg, P.: Microlocal properties of Shubin pseudodifferential and localization operators. J. Pseudo-Differ. Oper. Appl. 7(1), 91–111 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schulz, R., Wahlberg, P.: Equality of the homogeneous and the Gabor wave front set. Commun. Partial Differ. Equ. 42(5), 703–730 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Springer-Verlag, Berlin (1987)

    Book  MATH  Google Scholar 

  39. Sjöstrand, J.: Singularités analytiques microlocales. Astérisque 95, 1–166 (1982)

    MATH  Google Scholar 

  40. Toft, J.: The Bargmann transform on modulation and Gelfand–Shilov spaces, with applications to Toeplitz and pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 3(2), 145–227 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  41. Toft, J.: Images of function and distribution spaces under the Bargmann transform. J. Pseudo-Differ. Oper. Appl. 8(1), 83–139 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Treves, F.: Topological vector spaces, distributions and kernels. Academic Press, New York (1967)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for the careful reading and for the comments and remarks which improve the presentation and the quality of the paper.

The authors were partially supported by the INdAM-Gnampa Project 2016 “Nuove prospettive nell’analisi microlocale e tempo-frequenza”, by FAR 2013, FAR 2014 (University of Ferrara) and by the project “Ricerca Locale - Analisi di Gabor, operatori pseudodifferenziali ed equazioni differenziali” (University of Torino). The research of the second author was partially supported by the project MTM2016-76647-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Oliaro.

Additional information

Communicated by K. Gröchenig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boiti, C., Jornet, D. & Oliaro, A. The Gabor wave front set in spaces of ultradifferentiable functions. Monatsh Math 188, 199–246 (2019). https://doi.org/10.1007/s00605-018-1242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-018-1242-3

Keywords

Mathematics Subject Classification

Navigation