Skip to main content
Log in

A note on measure-geometric Laplacians

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We consider the measure-geometric Laplacians \(\Delta ^{\mu }\) with respect to atomless compactly supported Borel probability measures \(\mu \) as introduced by Freiberg and Zähle (Potential Anal. 16(1):265–277, 2002) and show that the harmonic calculus of \(\Delta ^{\mu }\) can be deduced from the classical (weak) Laplacian. We explicitly calculate the eigenvalues and eigenfunctions of \(\Delta ^{\mu }\). Further, it is shown that there exists a measure-geometric Laplacian whose eigenfunctions are the Chebyshev polynomials and illustrate our results through specific examples of fractal measures, namely inhomogeneous self-similar Cantor measures and Salem measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arzt, P.: Measure theoretic trigonometric functions. J. Fractal Geom. 2, 115–169 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bandt, C., Barnsley, M., Hegland, M., Vince, A.: Conjugacies provided by fractal transformations I: Conjugate measures, Hilbert spaces, orthogonal expansions, and flows, on self-referential spaces (2014). arXiv:1409.3309

  3. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpiński gasket. Probab. Theory Relat. Fields 79(4), 543–623 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bird, E.J., Ngai, S.-M., Teplyaev, A.: Fractal Laplacians on the unit interval. Ann. Sci. Math. Quebec 27, 135–168 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Denker, M., Sato, H.: Sierpiński gasket as a Martin boundary I Martin kernels. Potential Anal. 14(3), 211–232 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Denker, M., Sato, H.: Sierpiński gasket as a Martin boundary II. The intrinsic metric. Publ. Res. Inst. Math. Sci. 35(5), 769–794 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 3rd edn. Wiley, New York (2014)

    MATH  Google Scholar 

  8. Feller, W.: Generalized second order differential operators and their lateral conditions. Ill. J. Math. 1, 459–504 (1957)

    MathSciNet  MATH  Google Scholar 

  9. Freiberg, U.: Spectral asymptotics of generalized measure geometric Laplacians on Cantor like sets. Forum Math. 17, 87–104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Freiberg, U., Zähle, M.: Harmonic calculus on fractals: a measure geometric approach I. Potential Anal. 16(1), 265–277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldstein, S.: Random walks and diffusions on fractals. In: Percolation Theory and Ergodic Theory of Infinite Particle Systems (Minneapolis, Minn., 1984–1985), vol. 8 of IMA vol. Math. Appl., pp. 121–129. Springer, New York (1987)

  12. Hutchinson, J.E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jordan, T., Kesseböhmer, M., Pollicott, M., Stratmann, B.O.: Sets of non-differentiability for conjugacies between expanding interval maps. Fundam. Math. 206, 161–183 (2009)

    Article  MATH  Google Scholar 

  14. Ju, H., Lau, K.-S., Wang, X.-Y.: Post-critically finite fractal and Martin boundary. Trans. Am. Math. Soc. 364(1), 103–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kac, I.S., Kreĭn, G.: On the spectral functions of the string. Am. Math. Soc. Transl. 103(1), 19–102 (1974)

    Article  MATH  Google Scholar 

  16. Kesseböhmer, M., Stratmann, B.O.: Hölder-differentiability of Gibbs distribution functions. Math. Proc. Cambridge Philos. Soc. 147(2), 489–503 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  18. Kusuoka, S.: A Diffusion Process on a Fractal. Probabilistic Methods in Mathematical Physics (Katata/Kyoto, 1985), pp. 251–274. Academic Press, Cambridge (1987)

    Google Scholar 

  19. Lindstrøm, T.: Brownian motion on nested fractals. Memoirs of the American Mathematical Society, vol. 83, no 420. American Mathematical Society, Providence, RI (1990)

  20. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Algorithms and Architectures for Advanced Scientific Computing. Wiley, New York (1992)

    Google Scholar 

  21. Salem, R.: On some singular monotonic functions which are strictly increasing. Trans. Am. Math. Soc. 53, 427–439 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strichartz, R.S.: Differential Equations on Fractals: A Tutorial. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  23. Teschl, G.: Ordinary differential equations and dynamical systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence, RI (2012)

  24. Zähle, M.: Harmonic calculus on fractals: a measure geometric approach II. Trans. Am. Math. Soc. 357(9), 3407–3423 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Samuel.

Additional information

Communicated by A. Constantin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kesseböhmer, M., Samuel, T. & Weyer, H. A note on measure-geometric Laplacians. Monatsh Math 181, 643–655 (2016). https://doi.org/10.1007/s00605-016-0906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-016-0906-0

Keywords

Mathematics Subject Classification

Navigation