Skip to main content
Log in

Convex neighborhoods for Lipschitz connections and sprays

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

We establish that over a \(C^{2,1}\) manifold the exponential map of any Lipschitz connection or spray determines a local Lipeomorphism and that, furthermore, reversible convex normal neighborhoods do exist. To that end we use the method of Picard-Lindelöf approximation to prove the strong differentiability of the exponential map at the origin and hence a version of Gauss’ Lemma which does not require the differentiability of the exponential map. Contrary to naive differential degree counting, the distance functions are shown to gain one degree and hence to be \(C^{1,1}\). As an application to mathematical relativity, it is argued that the mentioned differentiability conditions can be considered the optimal ones to preserve most results of causality theory. This theory is also shown to be generalizable to the Finsler spacetime case. In particular, we prove that the local Lorentzian(-Finsler) length maximization property of causal geodesics in the class of absolutely continuous causal curves holds already for \(C^{1,1}\) spacetime metrics. Finally, we study the local existence of convex functions and show that arbitrarily small globally hyperbolic convex normal neighborhoods do exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Please notice that according to [32] claim III in [33] is incorrect.

  2. There are well known difficulties in this generalization. They are related to the fact that sectional curvature bounds imply constant curvature [28, 50]. These problems could be sidestepped imposing only bounds on the sectional curvature of timelike planes [28].

  3. One could ask whether every Lipschitz function is strongly differentiable almost everywhere. The answer is negative already for functions defined on the real line [27], Sect. 14.4.1].

  4. The fact that \(N_1\) and \(N_2\) can be chosen to be open sets such that both \(f|_{N_1}\) and \(g\) are Lipschitz follows from Leach’s original formulation plus (i). The statement in the last paragraph is not contained in Leach’s original formulation but can be found in its proof.

References

  1. Akbar-Zadeh, H.: Sur les espaces de Finsler a courbures sectionnelles constantes. Acad. Roy. Belg. Bull. Cl. Sci. 74, 281–322 (1988)

    MathSciNet  Google Scholar 

  2. Ambrose, W., Palais, R.S., Singer, I.M.: Sprays. An. Acad. Brasil. Ciênc. 32(2), 163–178 (1960)

    MathSciNet  Google Scholar 

  3. Andersson, L., Galloway, G.J., Howard, R.: The cosmological time function. Class. Quantum Grav. 15, 309–322 (1998)

    Article  MathSciNet  Google Scholar 

  4. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The theory of sprays and Finsler spaces with applications in physics and biology. Springer, Dordrecht (1993)

    Book  Google Scholar 

  5. Bao, D., Chern, S.S., Shen, Z.: An introduction to Riemann-Finsler geometry. Springer, New York (2000)

    Book  Google Scholar 

  6. Beem, J.K.: Indefinite Finsler spaces and timelike spaces. Can. J. Math. 22, 1035–1039 (1970)

    Article  MathSciNet  Google Scholar 

  7. Beem, J.K.: Characterizing Finsler spaces which are pseudo-Riemannian of constant curvature. Pacific J. Math. 64, 67–77 (1976)

    Article  MathSciNet  Google Scholar 

  8. Beem, J.K., Ehrlich, P.E., Easley, K.L.: Global Lorentzian geometry. Marcel Dekker Inc., New York (1996)

    Google Scholar 

  9. Berestovskij, V.N., Nikolaev, I.G., Reshetnyak, Y.G.: Geometry IV: non-regular Riemannian geometry. Springer, Berlin (1993)

    Google Scholar 

  10. Buttazzo, G., Giaquinta, M.: One-dimensional variational problems. Oxford University Press, Oxford (1998)

    Google Scholar 

  11. Candela, A.M., Flores, J.L., Sánchez, M.: Global hyperbolicity and Palais-Smale condition for action functionals in stationary spacetimes. Adv. Math. 218, 515–536 (2008)

    Article  MathSciNet  Google Scholar 

  12. do Carmo, M.: Riemannian geometry. Birkhäuser, Boston (1992)

    Book  Google Scholar 

  13. Cartan, H.: Differential calculus. Hermann, Paris (1971)

    Google Scholar 

  14. Chen, B.L., LeFloch, P.G.: Injectivity radius of Lorentzian manifolds. Commun. Math. Phys. 278, 679–713 (2008)

    Article  MathSciNet  Google Scholar 

  15. Chruściel, P.T.: Elements of causality theory (2011). ArXiv:1110.6706v1

  16. Chruściel, P.T., Grant, J.D.E.: On Lorentzian causality with continuous metrics. Class. Quantum Grav. 29, 145001 (2012)

    Article  Google Scholar 

  17. Clarke, F.H.: On the inverse function theorem. Pacific J. Math. 64, 97–102 (1976)

    Article  MathSciNet  Google Scholar 

  18. DeTurck, D.M., Kazdan, J.L.: Some regularity theorems in Riemannian geometry. Ann. Sci. École Norm. Sup. 4(14), 249–260 (1981)

    MathSciNet  Google Scholar 

  19. Dieudonné, J.: Treatise on Analysis. Foundations of modern analysis. Academic Press, New York (1969)

    Google Scholar 

  20. Dolecki, S., Greco, G.H.: Amazing oblivion of Peano’s legacy (2012)

  21. Esser, M., Shisha, O.: A modified differentiation. Am. Math. Mon. 71, 904–906 (1964)

    Article  MathSciNet  Google Scholar 

  22. Evans, L.C.: Partial differential equations. American Mathematical Society, Providence (1998)

    Google Scholar 

  23. Fan, L., Liu, S., Gao, S.: Generalized monotonicity and convexity of non-differentiable functions. J. Math. Anal. Appl. 279, 276–289 (2003)

  24. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93, 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  25. Foertsch, T.: Ball versus distance convexity of metric spaces. Beiträge Algebra Geom. 45, 481–500 (2004)

    MathSciNet  Google Scholar 

  26. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian geometry. Springer, Berlin (1987)

    Book  Google Scholar 

  27. Garg, K.M.: Theory of differentiation. Wiley, New York (1998)

    Google Scholar 

  28. Harris, S.G.: A triangle comparison theorem for Lorentz manifolds. Indiana Univ. Math. J. 31, 289–308 (1982)

    Article  MathSciNet  Google Scholar 

  29. Hartman, P.: On the local uniqueness of geodesics. Am. J. Math. 72, 723–730 (1950)

    Article  Google Scholar 

  30. Hartman, P.: On geodesic coordinates. Am. J. Math. 73, 949–954 (1951)

    Article  Google Scholar 

  31. Hartman, P.: Ordinary differential equations. Wiley, New York (1964)

    Google Scholar 

  32. Hartman, P.: Remarks on geodesics. Proc. Am. Math. Soc. 89, 467–472 (1983)

    Article  Google Scholar 

  33. Hartman, P., Wintner, A.: On the problems of geodesics in the small. Am. J. Math. 73, 132–148 (1951)

    Article  MathSciNet  Google Scholar 

  34. Hawking, S.W., Ellis, G.F.R.: The large scale structure of space-time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  35. Krantz, S.G., Parks, H.R.: The implicit function theorem: history, theory, and applications. Birkhäuser, Boston (2000)

    Google Scholar 

  36. Kunzinger, M., Steinbauer, R., Stojković, M.: The exponential map of a \(C^{1,1}\)-metric. Differential Geom. Appl. 34, 14–24 (2014). ArXiv:1306.4776v1

  37. Kunzinger, M., Steinbauer, R., Stojković, M., Vickers, J.A.: A regularisation approach to causality theory for \(C^{1,1}\)-Lorentzian metrics. Gen. Relativ. Gravit. 46, 1738 (2014). ArXiv:1310.4404v2

  38. Lang, S.: Differential and Riemannian manifolds. Springer, New York (1995)

    Book  Google Scholar 

  39. Lang, S.: Fundamentals of differential geometry. Springer, New York (1999)

    Book  Google Scholar 

  40. Leach, E.B.: A note on inverse function theorems. Proc. Am. Math. Soc. 12, 694–697 (1961)

    Article  MathSciNet  Google Scholar 

  41. Leach, E.B.: On a related function theorem. Proc. Am. Math. Soc. 14, 687–689 (1963)

    Article  MathSciNet  Google Scholar 

  42. Matsumoto, M.: Foundations of Finsler geometry and special Finsler spaces. Kaseisha Press, Tokio (1986)

    Google Scholar 

  43. Milnor, J.: Morse theory. Princeton University Press, Princeton (1969)

    Google Scholar 

  44. Minguzz, E.: The causal ladder and the strength of \(K\)-causality. I. Quantum Grav. 25, 015009 (2008)

    Article  Google Scholar 

  45. Minguzzi, E.: Limit curve theorems in Lorentzian geometry. J. Math. Phys. 49, 092501 (2008)

    Article  MathSciNet  Google Scholar 

  46. Minguzzi, E.: The equality of mixed partial derivatives under weak differentiability conditions. Real Anal. Exchange (2014) (To appear. E-print Archive) ArXiv:1309.5841

  47. Minguzzi, E.: Light cones in Finsler spacetime. Comm. Math. Phys. (2014). ArXiv:1403.7060. doi:10.1007/s00220-014-2215-6

  48. Minguzzi, E., Sánchez, M.: The causal hierarchy of spacetimes, ESI Lect. Math. Phys., vol. Baum, H., Alekseevsky, D. (eds.) Recent developments in pseudo-Riemannian geometry, pp. 299–358. Eur. Math. Soc. Publ. House, Zurich (2008). ArXiv:gr-qc/0609119

  49. Nijenhuis, A.: Strong derivatives and inverse mappings. Am. Math. Mon. 81, 969–980 (1974)

    Article  MathSciNet  Google Scholar 

  50. Nomizu, K.: Remarks on sectional curvature of an indefinite metric. Proc. Am. Math. Soc. 89, 473–476 (1983)

    Article  MathSciNet  Google Scholar 

  51. O’Neill, B.: Semi-Riemannian geometry. Academic Press, San Diego (1983)

    Google Scholar 

  52. Peano, G.: Sur la définition de la dérivée. Mathesis 2, 12–14 (1892)

    Google Scholar 

  53. Penrose, R.: Techniques of differential topology in relativity. Cbms-Nsf regional conference series in applied mathematics. SIAM, Philadelphia (1972)

    Book  Google Scholar 

  54. Perelman, G.: Elements of Morse theory on Aleksandrov spaces (russian). Algebra i Analiz 5(1), 232–241 (1993). Engl. transl. St. Peterburg Math. J. 5:1, 205–213 (1994)

  55. Perelman, G., Petrunin, A.: Extremal subsets in Aleksandrov spaces and the generalized Lieberman theorem (in russian). Algebra i Analiz 5(1), 242–256 (1993). Engl. transl. St. Peterburg Math. J. 5:1, 215–227 (1994)

  56. Perlick, V.: Fermat principle in Finsler spacetimes. Gen. Relativ. Gravit. 38, 365–380 (2006)

    Article  MathSciNet  Google Scholar 

  57. Rudin, W.: Real and complex analysis. McGraw-Hill, London (1970)

    Google Scholar 

  58. Sakai, T.: Riemannian geometry. American Mathematical Society, Providence (1996)

    Google Scholar 

  59. Senovilla, J.M.M.: Singularity theorems and their consequences. Gen. Relativ. Gravit. 30, 701–848 (1998)

    Article  MathSciNet  Google Scholar 

  60. Villani, C.: Optimal transport. Springer, Berlin (2009)

    Book  Google Scholar 

  61. Wang, Z.: Notes on differential geometry (2012)

  62. Whitehead, J.H.C.: Convex regions in the geometry of paths. Quart. J. Math. Oxford Ser. 3, 33–42 (1932)

    Article  Google Scholar 

  63. Whitehead, J.H.C.: Convex regions in the geometry of paths—addendum. Quart. J. Math. Oxford Ser. 4, 226–227 (1933)

    Article  Google Scholar 

Download references

Acknowledgments

After this paper was posted on the preprint archive (1308.6675) another work by M. Kunzinger, R. Steinbauer, M. Stojković and J. A. Vickers was posted which obtained some of the results contained in this work through a regularization scheme for \(C^{1,1}\) metrics [37]. The approaches of this and that work nicely complement each other. However, the results of this work seem more general (e.g. they apply to Finsler geometry) and stronger (e.g. we prove strong differentiability of the exponential map at he origin). Also the proofs we provide are technically more elementary. The reader is referred to [37] for a comparison. I thank Piotr Chruściel for some useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Minguzzi.

Additional information

Communicated by P. Chrusciel.

This work has been partially supported by GNFM of INDAM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minguzzi, E. Convex neighborhoods for Lipschitz connections and sprays. Monatsh Math 177, 569–625 (2015). https://doi.org/10.1007/s00605-014-0699-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0699-y

Keywords

Mathematics Subject Classification

Navigation