1 Introduction

We start with some notation which will be used in this paper. By \(S_X(x,r)\) (\(S_X\) if \(x=0\) and \(r=1\)) we denote a sphere in a Banach space \(X\) with the center \(x\) and the radius \(r\), by \(\text{ ext}(S_X)\) the set of extreme points of \(S_X\) and the symbol \(X^*\) stands for a dual space of \(X\). An element \(x\in X\) is called a norming point for \(f\in X^*\) if \(x\in S_X\) and \(f(x)=\Vert x\Vert \). For \(z\in \mathbb{C }\), \(\text{ sgn}{z}=\overline{z}/|z|\) for \(z\ne 0\) and \(0\) for \(z=0\).

Let \(Y\) be a linear subspace of \(X\) and let \(\mathcal L (X,Y)\) (\(\mathcal L (X)\) if \(X=Y\)) be the space of all linear, continuous operators from \(X\) into \(Y\). Given \(A\in \mathcal L (Y)\), an operator \(P\in \mathcal L (X,Y)\) is called an extension of \(A\) (or a projection in the case of \(A=\text{ Id}_Y\)) if \(P|_Y=A\). The set of all extensions of \(A\) will be denoted by \(\mathcal P _A(X,Y)\). An extension \(P_0\in \mathcal P _A(X,Y)\) is minimal if

$$\begin{aligned} \Vert P_0\Vert =\lambda _{A}(X,Y)=\inf \{\Vert P\Vert :P\in \mathcal P _{A}(X,Y)\}, \end{aligned}$$
(1)

We write briefly \(\mathcal P (X,Y)\) and \(\lambda (Y,X) \) instead of \(\mathcal P _{\text{ Id}_Y}(X,Y)\) and \(\lambda _{\text{ Id}_Y}(Y,X)\) respectively. Basic results on minimal projections and extensions can be found in [1, 7, 9, 12, 13, 1518, 20, 22, 24]. Set

$$\begin{aligned} \mathcal L _Y(X,Y) = \{L\in \mathcal L (X,Y): L|_{Y}=0\}. \end{aligned}$$
(2)

Let \({\pi }_n\) denote the space of all trigonometric polynomials of degree \(\leqslant n\) and let \(\mathcal C _0(2\pi )\) be the space of all continuous, real valued, \(2\pi \)-periodic functions. The classical Fourier projection from \(\mathcal C _0(2\pi )\) onto \({\pi }_n\) is defined by a formula

$$\begin{aligned} (F_nf)(t)=(f*D_n)(t)=(1/2\pi )\int _{0}^{2\pi }f(s)D_n(t-s)\,ds, \end{aligned}$$
(3)

where \(D_n(t)=\sum _{j=-n}^{n}e^{ijt}\). It is well-known that \(F_n\) is the unique operator of minimal norm in the space \(\mathcal P (\mathcal C _0(2\pi ),{\pi }_n)\) [10, 23]. Moreover, \(\Vert F_n\Vert =\lambda (\pi _n,L_p[0,2\pi ])\) for \(1\leqslant p\leqslant \infty \), which follows from Rudin Theorem [8], however, in general, it is an open question if \(F_n\) is the unique minimal projection from \(L_p[0,2\pi ]\) onto \(\pi _n\) for \(p\ne 1,2,+\infty \). Partial results concerning subject can be found in [26] and [27].

In this paper we study the problem of the unique minimality of the Fourier-type extensions in the space \(L_1\). More precisely, let \(M\) be a set, \(\Sigma \)-\(\sigma \)-algebra of subsets of \(M\), \(\nu \) a positive measure on \(\Sigma \) such that \((M,\Sigma , \nu )\) is a complete measure space. By \(L_1(M,\Sigma , \nu )\) denote a space of complex-valued, \(\nu \)-measurable functions on \(M\) satisfying a condition

$$\begin{aligned} \Vert f\Vert _1=\int _{M}|f(z)|d\nu (z)<+\infty . \end{aligned}$$

To the end of this paper we assume that \((L_{1}(M,\Sigma , \nu ))^*=L_{\infty }(M,\Sigma , \nu )\), which is satisfied, for example, if \(\nu \) is \(\sigma \)-finite.

Definition 1

It is said that \(w\in V\subset L_{\infty }(M,\Sigma , \nu )\), \(w\ne 0\) is determined by its roots in the space \(V\) if and only if for any \(g\in V\) the condition \(g/w\in L_{\infty }(M,\Sigma , \nu )\) implies that \(g=cw\) for some \(c\in \mathbb{C }\).

Definition 2

A subspace \(V\subset L_1(M,\Sigma , \nu )\) is called smooth if and only if each member of \(\ V{\setminus }\{0\}\) is almost everywhere different from \(0\).

Take \(V\) a smooth, finite-dimensional subspace of \(L_1(M,\Sigma , \nu )\) with a basis \(\{v_1,\ldots ,v_k\}\) and fix an operator \(A\in \mathcal L (V)\). Observe that any \(P\in \mathcal P _A(L_1(M,\Sigma , \nu ),V)\) has a form

$$\begin{aligned} Pf=\sum _{j=1}^{k}\widehat{u_j}(f)v_j, \ \ \widehat{u_j}(v_i)=a_{j,i}, i,j=1,\ldots ,k, \text{ where} \end{aligned}$$
(4)

\([a_{i,j}]_{i,j=1}^{k}\) is a matrix of the operator \(A\) in the basis \(\{v_1,\ldots ,v_k\}\) and \(\widehat{u}\in (L_1(M,\Sigma , \nu ))^*\) denotes a functional associated with \(u\in L_{\infty }(M,\Sigma , \nu )\) by

$$\begin{aligned} \widehat{u}(f)=\int _{M}f(z)u(z)\,d\nu (z). \end{aligned}$$
(5)

Let \(P\in \mathcal P _A(L_1(M,\Sigma , \nu ),V)\) be given by (4) and \(z, w\in M\). Define

$$\begin{aligned} x^{P}_{z}(w)&= \sum _{j=1}^{k}u_{j}(z)v_j(w),\nonumber \\ V_j(z)&= \int _{M}v_j(w)\text{ sgn}(x^{P}_{z}(w))\,d\nu (w),\\ P_z&= \int _{M}|x^{P}_{z}(w)|\,d\nu (w).\nonumber \end{aligned}$$
(6)

A map \(z\rightarrow P_z\) is called the Lebesgue function of the operator \(P\). It is well known that

$$\begin{aligned} \Vert P\Vert =\text{ ess}\sup _{z\in M} P_z \text{(see} \text{[14,} \text{ Lem.} \text{2])}. \end{aligned}$$
(7)

Lemma 3

Assume that \(P_0\in \mathcal P _{A}(L_1(M,\Sigma , \nu ),V)\) and the Lebesgue function of the operator \(P_0\) is constant on \(M\) \((\nu ~a.a.)\) Let \(P_1, P_2\in \mathcal P _{A}(L_1(M,\Sigma , \nu ),V)\), \(\Vert P_1\Vert =\Vert P_2\Vert =\Vert P_0\Vert \) and \(P_0=(P_1+P_2)/2\). Then the Lebesgue functions of the operators \(P_j: j=1,2\) are constant on \(M\) and for \(\nu \) a.a. \(z\in M\),

$$\begin{aligned} \text{ sgn}(x^{P_1}_{z})=\text{ sgn}(x^{P_2}_{z})=\text{ sgn}(x^{P_0}_{z}). \end{aligned}$$

Proof

Let

$$\begin{aligned} P_j(f)=\sum _{i=1}^{k}\widehat{u_{ji}}(f)v_i: \ j=1,2 \end{aligned}$$

for some \(u_{ji}\in L_{\infty }(M,\Sigma , \nu ): j=1,2, i=1,\ldots ,k\) [see (5)]. Then

$$\begin{aligned} P_0(f)=\frac{P_1(f)+P_2(f)}{2}=\sum _{i=1}^{k}\frac{1}{2} (\widehat{u_{1i}}(f)+\widehat{u_{2i}}(f))v_i. \end{aligned}$$

For \(\nu \) a.a. \(z\in M\),

$$\begin{aligned} \Vert P_0\Vert&= (P_0)_z=\int _{M}\Big |\sum _{i=1}^{k} \frac{1}{2}[u_{1i}(z)+u_{2i}(z)]v_i(w)\Big |d\nu (w)\\&\leqslant \frac{1}{2}\int _{M}\Big |\sum _{i=1}^{k}u_{1i}(z)v_i(w)\Big |\,d \nu (w)+\frac{1}{2}\int _{M}\Big |\sum _{i=1}^{k}u_{2i}(z)v_i(w)\Big |d\nu (w)\\&= \frac{1}{2}(P_1)_z+\frac{1}{2}(P_2)_z\leqslant \frac{1}{2}(\Vert P_1\Vert +\Vert P_2\Vert )= \Vert P_0\Vert , \end{aligned}$$

so in the above inequalities we get equalities. In particular, for \(\nu \) a.a. \(z,w\in M\),

$$\begin{aligned} \Big |\sum _{i=1}^{k}[u_{1i}(z)+u_{2i}(z)]v_i(w)\Big |=\Big |\sum _{i=1}^{k}u_{1i}(z)v_i(w)\Big |+\Big | \sum _{i=1}^{k}u_{2i}(z)v_i(w)\Big |, \end{aligned}$$

or equivalently

$$\begin{aligned} \text{ sgn}(x^{P_1}_{z})=\text{ sgn}(x^{P_2}_{z})=\text{ sgn}(x^{P_0}_{z}) \end{aligned}$$

and

$$\begin{aligned} (P_1)_z=(P_2)_z=\Vert P_0\Vert . \end{aligned}$$

\(\square \)

2 Main results

Now we introduce some notation which we will use in this section. We write briefly \(re^{it}\in \mathbb{C }^n\) instead of \((r_1e^{it_1},\ldots ,r_ne^{it_n})\in \mathbb{C }^n\), and put \(r=(r_1,\ldots ,r_n)\in [0,\infty )^n\), \(t=(t_1,\ldots ,t_n)\in I\), \(I=[0,2\pi ]^n \). The symbol \(\mathbb{T }\) stands for the unit circle in a complex plane, i.e. \(\mathbb{T }=\{z\in \mathbb{C }: |z|=1\}\).

Definition 4

A subset \(Z\) of \( \mathbb{C }^{n}\) is called an \(n\)-circular set if for any \((z_1,\ldots ,z_n)\in Z\) and \((\delta _1,\ldots ,\delta _n)\in \mathbb{T }^n\), \((\delta _1z_1,\ldots ,\delta _nz_n)\) belongs to \(Z\).

A unit ball with \(p\)-norm for \(p\geqslant 1\), \(\mathbb{T }^n\) or \(D_1\times \dots \times D_n\), where \(D_j\subset \mathbb{C }\) for \(j=1,\ldots , n\) denotes a classical geometric ring, are the examples of the \(n\)-circular sets.

Observe that any \(n\)-circular set \(Z\) can be written in a form

$$\begin{aligned} Z=\{re^{it}: r\in W\subset [0,\infty )^n, \ t\in I \}. \end{aligned}$$
(8)

Let \(\lambda _W\) be a nonnegative measure on \(W\) such that \(0<\lambda _W(W)<\infty \). For example, for \(Z=\{z\in \mathbb{C }: |z|\leqslant 1\}\) and a Borel set \(A\subset [0,1]\), \(\lambda _W(A)=\int _A rdr\) or for \(Z=\bigcup _{j=1}^p\{z\in \mathbb{C }: |z|=r_j\}\), \(\lambda _W\) is a counting measure on \(W=\{r_1,\ldots ,r_p\}\). Let \(\lambda _I\) denote the normalized Lebesgue measure on \(I\). Set

$$\begin{aligned} \mu =\lambda _W\times \lambda _I \ (\text{ the} \text{ product} \text{ measure} \text{ of} \lambda _W \text{ and} \lambda _I \text{ on} \text{ the} \text{ set} W\times I). \end{aligned}$$
(9)

Define a measure \(\nu \) on \(Z\) associated with \(\mu \) by

$$\begin{aligned} \nu (A)=\mu (\{(r,t)\in W\times I:re^{it}\in A\}). \end{aligned}$$
(10)

Throughout the remainder of this paper the symbol \(L_1(Z)\) stands for the space of all \(\nu \)-measurable complex-valued functions on \(Z\) and such that

$$\begin{aligned} \Vert f\Vert _1=\int _Z|f(z)|\,d\nu (z)=\int \int _{W\times I}|f(re^{it})|\,d\mu (r,t)<\infty . \end{aligned}$$

For \(\beta \in \mathbb{N }^n, \alpha \in \mathbb{Z }^n\) define a function \(e^{\beta ,\alpha }\in L_1(Z)\) by

$$\begin{aligned} e^{\beta ,\alpha }(re^{it})\!=\!e^{\beta }(r)e^{\alpha }(e^{it}),\ \ \text{ where}\ e^{\gamma }(z)\!=\!\prod _{j=1}^nz^{\gamma _j}\ \text{ for}\ \gamma \in \mathbb{Z }^n, z\in \mathbb{C }^n\!\setminus \!\{0\}.\qquad \end{aligned}$$
(11)

Fix for \(j=1, \ldots , k\) \(a_j\in \mathbb{C }\), \(\beta ^j\in \mathbb{N }^n\) and \(\alpha ^j\in \mathbb{Z }^n\), \(\alpha ^{i}\ne \alpha ^{j}\) for \(i\ne j\). Set

$$\begin{aligned} V=\text{ span}\{e^{\beta ^1,\alpha ^1},\ldots , e^{\beta ^k,\alpha ^k}\} \end{aligned}$$
(12)

and

$$\begin{aligned} w=\sum _{j=1}^{k}a_je^{\beta ^j,\alpha ^j}. \end{aligned}$$
(13)

Define for \(t\in I\) an operator \(T_t:L_1(Z)\rightarrow L_1(Z)\) by

$$\begin{aligned} T_t(f)(ue^{is})=f(ue^{i(s+t}), \ s\in I. \end{aligned}$$
(14)

Observe that \(T_t\) is an isometry and \(V\) is an invariant subspace of \(T_t\). One can find that

$$\begin{aligned} T_t(e^{\beta ,\alpha })=e^{\beta ,\alpha }\cdot e^{\alpha }(e^{i t}). \end{aligned}$$
(15)

Now we will search for a minimal extension of an operator \(R_w=F_w|_V\), where \(F_w\in \mathcal L (L_1(Z),V)\) is given by

$$\begin{aligned} (F_wf)(re^{it})=(f*w)(re^{it})=\int \int \limits _{W\times I} f(ue^{is})w(re^{i(t-s)})\,d\mu (u,s). \end{aligned}$$
(16)

Remark 5

Let \(n=1\), \(Z=\mathbb{T }\), \(V=\text{ span}\{e^{-k},\ldots , e^{k}\}\) and \(w=\sum _{j=-k}^{k}e^{j}\). Then \(F_w\) is a classical Fourier projection from \(L_1(\mathbb{T })\) onto \(V\).

Lemma 6

The Lebesgue function of the operator \(F_w\) is constant and \(\Vert F_w\Vert =\Vert w\Vert _1\).

Proof

By (13), (14) and (16),

$$\begin{aligned} (F_wf)(re^{it})&= \int \int \limits _{W\times I} f(ue^{is})\left(\sum _{j=1}^{k}a_je^{\beta ^j,\alpha ^j}\right)(re^{i(t-s)})\,d\mu (u,s)\\&= \sum _{j=1}^{k}a_j\int \int \limits _{W\times I} f(ue^{is})e^{0,-\alpha _j}(ue^{is})\,d\mu (u,s)e^{\beta ^j,\alpha ^j}(re^{it}). \end{aligned}$$

Hence

$$\begin{aligned} F_wf=\sum _{j=1}^{k} a_j\widehat{e^{0,-\alpha _j}}(f)e^{\beta ^j,\alpha ^j}, \end{aligned}$$
(17)

where for \(v\in L_{\infty }(Z)\),

$$\begin{aligned} \hat{v}(f)=\int \int \limits _{W\times I} f(re^{it})v(re^{it})\,d\mu (r,t). \end{aligned}$$
(18)

Combining it with (6) and (17) we get that for \(\nu \) a.a. \(ue^{is}\in Z\),

$$\begin{aligned} x^{F_w}_{ue^{is}}(re^{it})&= \sum _{j=1}^{k} a_je^{0,-\alpha _j}(ue^{is})e^{\beta ^j,\alpha ^j}(re^{it})\nonumber \\&= \sum _{j=1}^{k} a_je^{\beta ^j,\alpha ^j}(re^{i(t-s)})=w(re^{i(t-s)}) \end{aligned}$$
(19)

and

$$\begin{aligned} (F_w)_{ue^{is}}&= \int \int \limits _{W\times I}|x^{F_w}_{ue^{is}}(re^{it})|\,d\mu (r,t)=\int \int \limits _{W\times I}|w(re^{i(t-s)})|\,d\mu (r,t)\\&= \int \int \limits _{W\times I}|w(re^{it})|\,d\mu (r,t)=\Vert w\Vert _1. \end{aligned}$$

By (7),

$$\begin{aligned} \Vert F_w\Vert = \text{ ess}\sup _{ue^{is}\in Z}(F_w)_{ue^{is}}=\Vert w\Vert _1. \end{aligned}$$

\(\square \)

Now we formulate three lemmas whose proofs go in the same manner as the proofs of Lemmas 1.3–1.5 in [19], so we omit them.

Lemma 7

A subspace \(V\subset L_1(Z)\) defined by (12) is smooth \((\)see Definition 2\()\).

Lemma 8

For N a finite subset of \(\mathbb{Z }^n\) there exists a real function \(f\in L_{\infty }(Z)\), \(f\ne 0\) such that

$$\begin{aligned} \int \int \limits _{W\times I} f(re^{it})e^{\beta ,\alpha }(re^{it})\,d\mu (r,t)=0\ \ \text{ for}\ \ \alpha \in N \ \ \text{ and}\ \ \beta \in \mathbb{N }^n. \end{aligned}$$

Lemma 9

Assume that \(g,w\in S_V,g/w\in L_{\infty }(Z), \text{ sgn}(g)=\text{ sgn}(w)\) \(\nu \) almost everywhere in \(Z\). Then for any \(\varepsilon \in \mathbb R \) such that \( |\varepsilon |<(\Vert (g-w)/w\Vert _{\infty })^{-1} \) we have

$$\begin{aligned} \text{ sgn}(w+\varepsilon (g-w))=\text{ sgn}(w)\ \nu \text{ a.e.} \end{aligned}$$

Now define

$$\begin{aligned} X=\text{ span}\{e^{\beta ,\alpha ^{j}}: \beta \in \mathbb{N }^n,\quad j=1, \ldots , k\}\ \text{[see} \text{(11)]}. \end{aligned}$$
(20)

Observe that (12) and (20) imply that \(V\subset X\). Set

$$\begin{aligned} \mathcal L _X(L_1(Z), V)=\{L\in \mathcal L (L_1(Z), V): L|_{X}=0\} \end{aligned}$$
(21)

and

$$\begin{aligned} \mathcal P _X(L_1(Z), V)=F_w+\mathcal L _X(L_1(Z), V) \ [\text{ see} \text{(2)}]. \end{aligned}$$
(22)

We say that \(P_0\in \mathcal P _X(L_1(Z), V)\) is a minimal extension of the operator \(R_w\) in the set \(\mathcal P _X(L_1(Z), V)\), if

$$\begin{aligned} \Vert P_0\Vert =\inf \{\Vert P\Vert : P\in \mathcal P _X(L_1(Z), V)\}. \end{aligned}$$

It is easy to see that \(\mathcal P _X(L_1(Z), V)\subset \mathcal P _{R_w}(L_1(Z), V)\). Denote

$$\begin{aligned} M^{X}_{w} \text{---the} \text{ set} \text{ of} \text{ minimal} \text{ extensions} \text{ of} R_w \text{ in} \text{ the} \text{ space} \mathcal P _X(L_1(Z), V). \end{aligned}$$
(23)

Theorem 10

The operator \(F_w\) is the unique extension of \(R_w\) belonging to the space \(\mathcal P _X(L_1(Z),V)\) and commutative with a group \(\{T_t: t\in I\}\).

Proof

By the Stone–Weierstrass Theorem and a density of the continuous functions in the space \(L_1(Z)\),

$$\begin{aligned} L_1(Z)=\overline{\text{ span}\{e^{\beta ,\alpha }:\alpha \in \mathbb{Z }^n, \beta \in \mathbb{N }^n \}}. \end{aligned}$$
(24)

Let \(P=\sum _{j=1}^{k}\widehat{w_j}(\cdot )e^{\beta ^j,\alpha ^j}\) be a minimal extensionof \(R_w\) in the space \(\mathcal P _X(L_1(Z), V)\) which commutes with the group of isometries \(\{T_t: t\in I\}\). We show that \(P(e^{\beta ,\alpha })=F_w(e^{\beta ,\alpha })\) for \(\beta \in \mathbb{N }^n, \alpha \in \mathbb{Z }^n\). If \(\beta \in \mathbb{N }^n, \alpha \in \{\alpha ^j: j=1,\ldots , k\}\) the above inequality follows from the fact that \(P\in \mathcal P _X(L_1(Z), V)\). If \(\beta \in \mathbb{N }^n, \alpha \notin \{\alpha ^j: j=1,\ldots , k\}\) the condition

$$\begin{aligned} T_s\circ P(e^{\beta ,\alpha })=P\circ T_s (e^{\beta ,\alpha })\quad \text{ for} s\in I \end{aligned}$$

is equivalent to

$$\begin{aligned} \sum _{j=1}^{k}\widehat{w_j}(e^{\beta ,\alpha })e^{\beta ^j,\alpha ^j}\cdot e^{\alpha ^j }(e^{is})=\sum _{j=1}^{k}\widehat{w_j}(e^{\beta ,\alpha })e^{\beta ^j,\alpha ^j}\cdot e^{\alpha }(e^{is}),\quad s\in I. \end{aligned}$$

Hence

$$\begin{aligned} \sum _{j=1}^{k}\widehat{w_j}(e^{\beta ,\alpha })e^{\beta ^j,\alpha ^j}\cdot ( e^{\alpha ^j }(e^{is})- e^{\alpha }(e^{is}))=0,\quad s\in I. \end{aligned}$$

By linear independence of the functions \(\{e^{\beta ^j,\alpha ^j}\}_{j=1}^{k}\) we get that \(\widehat{w_j}(e^{\beta ,\alpha })=0\) for \(j=1, \ldots , k\). Hence \(P(e^{\beta ,\alpha })=0=F_w(e^{\beta ,\alpha })\) for \(\alpha \notin \{\alpha ^1,\ldots , \alpha ^k\}\), \(\beta \in \mathbb{N }^n\), which by (24) shows that \(P=F_w\). \(\square \)

Theorem 11

\(F_w\) is a minimal extensionof \(R_w\) in the set \(\mathcal P _X(L_1(Z), V)\) and for any \(P\in \mathcal P _X(L_1(Z), V)\),

$$\begin{aligned} F_w=\int \limits _IT_{s}^{-1}PT_s \, d \lambda _I(s). \end{aligned}$$

Proof

Let \(P\in M^X_w\) [see (23)]. Define

$$\begin{aligned} Q_P=\int \limits _{I}T_{s}^{-1}PT_s\,d\lambda _I(s). \end{aligned}$$

By (15) we obtain that \(Q_P\in \mathcal P _X(L_1(Z), V)\). Properties of the Lebesgue measure imply that \(Q_P\) is an operator commutative with a group of isometries \(\{T_t: t\in I\}\). By Theorem 10, \(Q_P=F_w\). Since \(\{T_t: t\in I\}\) are the isometries, \(\Vert F_w\Vert =\Vert Q_P\Vert \leqslant \Vert P\Vert \), which completes the proof of minimality of an operator \(F_w\) in the space \(\mathcal P _X(L_1(Z), V)\). \(\square \)

A convenient tool for studying minimality of Fourier-type extensions in the space \(\mathcal P _A(L_1(M,\Sigma , \nu ),V)\) is the following:

Theorem 12

([5, Cor. 1]) Let \(V\) be a smooth, \(k\)-dimensional subspace of \(L_1(M,\Sigma , \nu )\) with a basis \(\{v_1,\ldots , v_k\}\). Then \(P\) is a minimal extension of the operator \(A\) if and only if two conditions are satisfied:

  1. (i)

    the Lebesgue function of the operator \(P\) is constant on \(M\);

  2. (ii)

    there exist a matrix \(B=[B_{ij}]_{i,j=1}^k\) and a positive function \(\Phi \) such that for \(v=(v_1,\ldots ,v_k)\),

$$\begin{aligned} \Phi (z)(V_1(z),\ldots , V_k(z))=Bv(z)=\left[\sum _{j=1}^{k}B_{ij}v_j(z)\right]_{i=1}^{k}. \end{aligned}$$
(25)

Theorem 13

Assume that \(\#\{a_j\ne 0: j=1,\ldots , k\}\geqslant 2\) [see (13)]. Let \(Z\) be an \(n\)-circular setsuch that \(\{e^{{\beta ^j}}|_W\}_{j=1}^{k}\) are linearly independent functions. Then \(F_w\) is not a minimal extensionof an operator \(R_w\).

Proof

Assume on the contrary that \(F_w\in \mathcal P _{R_w}(L_1(Z),V)\) is a minimal extensionof an operator \(R_w\). By Theorem 10, \(F_w\) commutes with a group \(G=\{T_t: t\in I\}\). Taking \(\nu _1\) a Haar measure on \(G\) and \(\int _I {T_s}^{-1}BT_sd\nu _1(s)\) instead of a matrix \(B\) we can assume that the matrix \(B\) from Theorem 12 is commutative with \(G\). It is easy to check that such a matrix is diagonal. Set \(B=diag(B_1,\ldots , B_k)\). We calculate [see (6) and (19)],

$$\begin{aligned} V_j(re^{it})&= \int \int \limits _{W\times I} e^{\beta ^j,\alpha ^j}(ue^{is})\text{ sgn}(x^{F_w}_{re^{it}}(ue^{is}))\,d\mu (u,s)\\&= \int \int \limits _{W\times I} e^{\beta ^j,\alpha ^j}(ue^{is})\text{ sgn}(w(ue^{i(s-t)}))\,d\mu (u,s)\\&= \int \int \limits _{W\times I} e^{\beta ^j,\alpha ^j}(ue^{i(s+t)})\text{ sgn}(w(ue^{is}))\,d\mu (u,s)\\&= e^{\alpha ^j}(e^{it})\int \int \limits _{W\times I} e^{\beta ^j,\alpha ^j}(ue^{is})\text{ sgn}(w(ue^{is}))\,d\mu (u,s)=C_je^{\alpha ^j}(e^{it}), \end{aligned}$$

where \(C_j=\int \int \limits _{W\times I} e^{\beta ^j,\alpha ^j}(ue^{is})\text{ sgn}(w(ue^{is}))d\mu (u,s)\). Now the condition (ii) of Theorem 12 [see (25)] is equivalent to

$$\begin{aligned} \Phi (re^{it})(C_1e^{\alpha ^1}(e^{it}), \ldots ,C_ke^{\alpha ^k}(e^{it}))\!=\!(B_1e^{\beta ^1,\alpha ^1}(re^{it}), \ldots , B_ke^{\beta ^k,\alpha ^k}(re^{it})).\qquad \quad \end{aligned}$$
(26)

By [5, Lem. 4], \(\dim \text{ span}\{V_1,\ldots , V_k\}\geqslant 2\). Hence there exist \(j_1, j_2\in \{1,\ldots ,k\}\) such that \(C_{j_1}\ne 0\) i \(C_{j_2}\ne 0\) and

$$\begin{aligned} \Phi (re^{it})=\frac{B_{j_1}}{C_{j_1}}e^{\beta ^{j_1}}(r)= \frac{B_{j_2}}{C_{j_2}}e^{\beta ^{j_2}}(r)\quad \text{ for} r\in W, \end{aligned}$$

which leads to a contradiction with a linear independence of the functions \(e^{{\beta ^{j_1}}}|_W\) and \(e^{{\beta ^{j_2}}}|_W\). By Theorem 12, \(F_w\) is not a minimal extensionof \(R_w\). \(\square \)

Remark 14

[19] In the case \(Z=\mathbb{T }^n\), the operator \(F_w\) is a minimal extensionof \(R_w\) in the whole space \(\mathcal P _{R_w}(L_1(\mathbb{T }^n), V)\) [it is sufficient to take \(\Phi \equiv 1\) and \(B_j=C_j\) for \(j=1,\ldots ,k\) in the equality (26)].

Theorem 15

An operator \(F_w\) is an extreme point of the set \(S(0,\Vert w\Vert _1)\cap \mathcal P _{R_w}(L_1(Z), V)\) if and only if \(w/\Vert w\Vert _1\) is a unique norming point \( g\in S_V\) for a functional

$$\begin{aligned} L_1(Z)\ni h\mapsto \int \limits _{Z} h(z)\text{ sgn}(w)(z)\,d\nu (z)=\int \int \limits _{W\times I} h(re^{it})\text{ sgn}(w)(re^{it})\,d\mu (r,t) \end{aligned}$$

such that \(g/w\in L_{\infty }(Z)\).

Proof

Assume that there exists \(g\in S_V, g\ne w, g/w\in L_{\infty }(Z)\) such that \(g\) is a norming point for \(\widehat{\text{ sgn}(w)}\) [see (18)], i.e. \(\text{ sgn}(w)=\text{ sgn}(g)\ \nu \) a.e. Define \(h=g-w\in V\). By Lemma 8, there exists a real function \(f\in L_{\infty }(Z)\) which is orthogonal to \(e^{\beta ,\alpha }\) for \(\beta \in \mathbb{N }^n\), \(\alpha \in \tilde{V}-\tilde{V}\), where \(\tilde{V}=\{\alpha : e^{\beta ,\alpha }\in V\}\). We can assume that \(\Vert f\Vert _{\infty }<(\Vert h/w\Vert _{\infty })^{-1}\). By Lemma 9,

$$\begin{aligned} \text{ sgn}(w)(re^{it})=\text{ sgn} \left(w\pm f(ue^{is})\cdot h\right)(re^{it})\quad \text{ for}\ \nu \ \text{ a.a.}\ re^{it}, ue^{is}\in Z. \end{aligned}$$
(27)

Set \(Q_1=F_w+L\) and \(Q_2=F_w-L\), where

$$\begin{aligned} (Lk)(re^{it})=\int \int \limits _{W\times I} f(ue^{is})k(ue^{is})h(re^{i(t-s)})\,d\mu (u,s). \end{aligned}$$
(28)

For any \(k\in L_1(Z)\) a function \(Lk\in V\) because \(h=\sum _{j=1}^{k}B_je^{\beta _j,\alpha ^{j}}\) for some \(B_j\in \mathbb{C }, j=1\ldots , k\) and

$$\begin{aligned} Lk(re^{it})&= \int \int \limits _{W\times I}f(ue^{is})k(ue^{is})\left(\sum _{j=1}^{k}B_je^{\beta ^j,\alpha ^{j}}(re^{i(t-s)})\right)\,d\mu (u,s)\\&= \sum _{j=1}^{k}B_j \widehat{f e^{0,-\alpha ^{j}}}(k)e^{\beta ^j,\alpha ^{j}}(re^{it}). \end{aligned}$$

Observe that \(L\ne 0\). We calculate,

$$\begin{aligned} x^{L}_{ue^{is}}(re^{it})&= \sum _{j=1}^{k}B_jf(ue^{is}) e^{0,-\alpha ^{j}}(ue^{is})e^{\beta ^j,\alpha ^{j}}(re^{it})\\&= \sum _{j=1}^{k}B_je^{\beta ^j, \alpha ^{j}}(re^{i(t-s)})f(ue^{is})=h(re^{i(t-s)})f(ue^{is}).\nonumber \end{aligned}$$
(29)

By the properties of \(f\),

$$\begin{aligned} L(e^{\beta ,\alpha })&= \sum _{j=1}^{k}B_j\widehat{fe^{0,-\alpha ^{j}}}(e^{\beta , \alpha })\\&= \sum _{j=1}^{k}B_j\int \int \limits _{W\times I} f(ue^{is})e^{\beta ,\alpha -\alpha ^j}(ue^{is})\,d\mu (u,s)=0\quad \text{ for}\ \ \alpha \in \tilde{V}. \end{aligned}$$

Hence \(Q_1\) and \(Q_2\) are the minimal extensions of \(R_w\) and \(Q_j\ne F_w: j=1, 2\) (since \(L\ne 0\)). By (19) and (27)–(29) for \(\nu \) a.a. \(ue^{is}\in Z\) and \(j=1,2\),

$$\begin{aligned} (Q_j)_{ue^{is}}&= \int \int \limits _{W\times I}|x^{F_w\pm L}_{ue^{is}}(re^{it})|\,d\mu (r,t)=\int \int \limits _{W\times I}|(x^{F_w}_{ue^{is}}\pm x^{L}_{ue^{is}})(re^{it})|\,d\mu (r,t)\\&= \int \int \limits _{W\times I}|w(re^{i(t-s)})\pm h(re^{i(t-s)})f(ue^{is})|\,d\mu (r,t)\\&= \int \int \limits _{W\times I} \text{ sgn}[(w\pm h)(re^{i(t-s)})f(ue^{is})][(w\pm h)(re^{i(t-s)})f(ue^{is})]\,d\mu (r,t)\\&= \int \int \limits _{W\times I} \text{ sgn}(w)(re^{i(t-s)})(w(re^{i(t-s)})\pm h(re^{i(t-s)})f(ue^{is}))\,d\mu (r,t)\\& = int \int \limits _{W\times I}|w(re^{i(t-s)})|\,d\mu (r,t)\!\pm \! f(ue^{is})\int \int \limits _{W\!\times \! I}(\text{ sgn}(w)\cdot (g\!-\!w))(re^{i(t-s)})\,d\mu (r,t)\\&= \Vert w\Vert _1\pm f(ue^{is})(\Vert g\Vert _1-\Vert w\Vert _1)=\Vert w\Vert _1=\Vert F_w\Vert . \end{aligned}$$

Applying (7) we obtain that \(\Vert Q_1\Vert =\Vert Q_2\Vert =\Vert F_w\Vert \). Since \(F_w=(Q_1+Q_2)/2\), \(F_w\) is not an extreme point of the set \(\mathcal P _{R_w}(L_1(Z),V)\cap S(0,\Vert w\Vert _1)\).

Now assume that \(F_w\) is not an extreme point of the set \(\mathcal P _{R_w}(L_1(Z),V)\cap S(0,\Vert w\Vert _1)\). Hence there exist \(P_1, P_2\in S(0,\Vert w\Vert _1)\cap \mathcal P _{R_w}(L_1(Z),V)\) such that \(P_j\ne F_w: j=1,2\) and \(F_w=(P_1+P_2)/2\). Define \(L=(P_1-P_2)/2\). Then \(P_1=F_w+L\) and \(P_2=F_w-L\). By Lemma 6, the Lebesgue function of the operator \(F_w\) is constant. We have \(\Vert F_w+L\Vert =\Vert F_w-L\Vert =\Vert w\Vert _1\) and by Lemma 3, for \(\nu \) a.a. \(ue^{is}\in Z\),

$$\begin{aligned} (F_w+L)_{ue^{is}}&= (F_w-L)_{ue^{is}} =\Vert w\Vert _1,\nonumber \\ \text{ sgn}(x^{F_w+L}_{ue^{is}})&= \text{ sgn}(x^{F_w-L}_{ue^{is}})= \text{ sgn}(x^{F_w}_{ue^{is}}). \end{aligned}$$
(30)

Let us fix \(ue^{is}\in Z\) satisfying (30) and such that

$$\begin{aligned} x^{L}_{ue^{is}}\ne 0 \text{ and} x^{F_w}_{ue^{is}}(re^{i(t+s)})=w(re^{it})\ \text{[see} \text{(19)]}. \end{aligned}$$
(31)

Without loss of generality we can assume that \(\Vert w\Vert _1=1\). Set

$$\begin{aligned} h=T_s(x^{L}_{ue^{is}})\ \text{[see} \text{(14)]},\ \ g=w+h. \end{aligned}$$
(32)

Since \(h\ne 0\), \(g\ne w\). Observe that by (30)–(32) for \(\nu \) a.a. \(re^{it}\in Z\),

$$\begin{aligned} g(re^{it})&= (w+h)(re^{it})=w(re^{it})+T_{s}(x^{L}_{ue^{is}})(re^{it})\nonumber \\&= x^{F_w}_{ue^{is}}(re^{i(t+s)})+x^{L}_{ue^{is}}(re^{i(t+s)})= x^{F_w+L}_{ue^{is}}(re^{i(t+s)}) \end{aligned}$$
(33)

and

$$\begin{aligned} \text{ sgn} (g)(re^{it})&= \text{ sgn} (x^{F_w+L}_{ue^{is}})(re^{i(t+s)})=\text{ sgn} (x^{F_w}_{ue^{is}})(re^{i(t+s)})=\text{ sgn}(w)(re^{it}),\\ \text{ sgn} (w-h)(re^{it})&= \text{ sgn} (x^{F_w-L}_{ue^{is}})(re^{i(t+s)})=\text{ sgn} (x^{F_w}_{ue^{is}})(re^{i(t+s)})=\text{ sgn}(w)(re^{it}). \end{aligned}$$

Hence

$$\begin{aligned} \text{ sgn}(g)=\text{ sgn}(w)=\text{ sgn}(w-h)\ \nu \ \text{ a.e.} \end{aligned}$$
(34)

By (30) and (33),

$$\begin{aligned} \Vert g\Vert _1&= \int \int \limits _{W\times I}|g(re^{it})|d\mu (r,t)=\int \int \limits _{W\times I}|x^{F_w+L}_{ue^{is}}(re^{i(t+s)})|\,d\mu (r,t)\\&= \int \int \limits _{W\times I}|x^{F_w+L}_{ue^{is}}(re^{it})|\,d\mu (r,t)=(F_w+L)_{ue^{is}}=\Vert w\Vert _1=1. \end{aligned}$$

Now we show that \(\frac{g}{w}\in L_{\infty }(Z)\). Assume on the contrary that \(\frac{g}{w}\notin L_{\infty }(Z)\). Then for any \(k\in \mathbb{N }\) there exists \(A_k\subset Z: \nu (A_k)>0\) and \(|g(z)/w(z)|>k\) for \(z\in A_k\). Let \(z\in A_k\) and \(a_z=\text{ sgn}(w)(z)\). By (34),

$$\begin{aligned} a_z(w(z)+h(z))>ka_zw(z) \end{aligned}$$

and

$$\begin{aligned} a_z(w(z)-h(z))<(2-k)|w(z)|\leqslant 0 \quad \text{ for} \ k> 2. \end{aligned}$$

The above inequality implies that

$$\begin{aligned} \text{ sgn}(w-h)(z)\ne \text{ sgn}(w)(z)\quad \text{ for}\ z\in A_k, k>2; \end{aligned}$$

a contradiction with (34). \(\square \)

Lemma 16

\(F_w\) is the unique minimal extensionof \(R_w\) in the space \(\mathcal P _X(L_1(Z), V)\) if and only if\(F_w\) is an extreme point of the set \(M^{X}_{w}\) [see (23)].

The proof of Lemma 16 goes in the same manner as the proof of [19, Lem. 1.2], so we omit it.

Now we can formulate a main result of this paper, a theorem, which characterize the uniqueness of minimal Fourier-type extensions in the set \(\mathcal P _{X}(L_1(Z),V)\).

Theorem 17

The operator \(F_w\) is the unique minimal extensionof \(R_w=F_w|_V\) in the set \(\mathcal P _X(L_1(Z), V)\) if and only if\(w/\Vert w\Vert _1\) is a unique norming point \(g\in V\) for a functional

$$\begin{aligned} L_1(Z)\ni h\mapsto \int \int \limits _{W\times I}h(re^{it})\text{ sgn}(w)(re^{it})\,d\mu (r,t) \end{aligned}$$

such that \(g/w\in L_{\infty }(Z)\).

Proof

Assume that there exists \(g\in S_V, g\ne w, g/w\in L_{\infty }(Z)\) such that \(g\) is a norming point for \(\widehat{\text{ sgn}(w)}\) [see (18)], i.e. \(\text{ sgn}(w)=\text{ sgn}(g)\ \nu \) a.e. Notice that the operator \(L\) constructed in Theorem 15 [see (28)] is actually an element of the space \(\mathcal L _X(L_1(Z), V)\) and extensions \(Q_1=F_w+L\) and \(Q_2=F_w-L \) belong to the set \(\mathcal P _X(L_1(Z), V)\). By the first part of the proof of Theorem 15, \(F_w\) is not an extreme point of the set \(M^{X}_{w}\) [see (23)].

Now assume that \(w/\Vert w\Vert _1\) is a unique norming point \(g\in V\) for a functional

$$\begin{aligned} L_1(Z)\ni h\mapsto \int \int \limits _{W\times I}h(re^{it})\text{ sgn}(w)(re^{it})\,d\mu (r,t) \end{aligned}$$

such that \(g/w\in L_{\infty }(Z)\). By Theorem 15, \(F_w\) is not an extreme point of the set \(S(0,\Vert w\Vert _1)\cap \mathcal P _{R_w}(L_1(Z), V)\). Since \(M^{X}_{w}\subset S(0,\Vert w\Vert _1)\cap \mathcal P _{R_w}(L_1(Z), V)\), we get that

$$\begin{aligned} \text{ ext} \left[S(0,\Vert w\Vert _1)\cap \mathcal P _{R_w}(L_1(Z), V)\right]\subset \text{ ext}M^{X}_{w} \end{aligned}$$

and \(F_w\) is not an extreme point of the set \(M^{X}_{w}\). By Lemma 16 the proof is complete. \(\square \)

Directly from Theorem 17, reasoning as in the proof of [19, Cor. 1.9], we get the following result:

Corollary 18

Let \(w\in V, w\ne 0\) is determined by its roots in \(V\) (Definition 1). Then the operator \(F_w\) is the unique minimal extensionof \(R_w\) in the set \(\mathcal P _X(L_1(Z), V)\)

The next theorem shows how large the set of minimal extensions can be. We present it without proof. The reader interested in the method of proof is referred to [19, Th. 1.7].

Theorem 19

Let

$$\begin{aligned} S_w=\text{ span}\{P-F_w: P\in M^{X}_{w}\}. \end{aligned}$$

If the operator \(F_w\) is not a unique minimal extensionof the operator \(R_w\) in the set \(\mathcal P _X(L_1(Z), V)\), then \(\dim (S_w)=\infty \).

Theorem 20

(Daugavet [11]) Let \(K\) be a compact set without isolated points. If \(L: \mathcal C _\mathbb{K }(K)\rightarrow \mathcal C _\mathbb{K }(K)\) \((\mathbb{K }=\mathbb{R }\) or \(\mathbb{K }=\mathbb{C })\) is a compact operator, then

$$\begin{aligned} \Vert Id+L\Vert =1+\Vert L\Vert . \end{aligned}$$

Denote

$$\begin{aligned} \left(\mathcal{P }_X(L_1(Z), V)\right)^*=\{P^*: P\in \mathcal{P }_X(L_1(Z), V)\}. \end{aligned}$$

We say that an operator \({P_0}^*\in \left(\mathcal{P }_X(L_1(Z), V)\right)^*\) is an element of best approximation to \(A: L_{\infty }(Z)\rightarrow L_{\infty }(Z)\) in the set \( \left(\mathcal{P }_X(L_1(Z), V)\right)^*\) if

$$\begin{aligned} \Vert A-{P_0}^*\Vert =\inf \{ \Vert A-P^*\Vert : {P}^*\in \left(\mathcal{P }_X(L_1(Z), V)\right)^*\}. \end{aligned}$$

In the same manner as in [20, Th.1.9] we can prove:

Theorem 21

Let \(Z\) be a compact \(n\)-circular set. An identity operator \(Id: L_{\infty }(Z)\rightarrow L_{\infty }(Z)\) has the unique element of best approximation in \(\left(\mathcal{P }_X(L_1(Z), V)\right)^*\) if and only if\(w/\Vert w\Vert _1\) is a unique norming point \(g\in V\) for a functional

$$\begin{aligned} L_1(Z)\ni h\mapsto \int \int \limits _{W\times I} h(re^{it})\text{ sgn}(w)(re^{it})\,d\mu (r,t) \end{aligned}$$

such that \(g/w\in L_{\infty }(Z)\).

3 Applications

Now we show some applications of Theorem 17.

Theorem 22

[25, Th.14.3.3] Let \(\Omega \) be a bounded domain in \(\mathbb{C }^n\), \(n>1\). If \(f\) and \(g\) are holomorphic functions on \(\Omega \), continuous in \(\bar{\Omega }\) and such that

$$\begin{aligned} |f(z)|\leqslant |g(z)| \quad \text{ for} \quad z\in \partial \Omega , \end{aligned}$$

then

$$\begin{aligned} |f(z)|\leqslant |g(z)| \quad \text{ for} \quad z\in \Omega . \end{aligned}$$

Directly from Theorem 17 and Theorem 22 we get the following two examples:

Example 23

(Uniqueness) Let \(D\) be a bounded \(n\)-circular domain in \(\mathbb{C }^n\), \(n\geqslant 2\) and let \(Z=\partial D\). Assume that \(V\) is the space of algebraic polynomials of \(n\) complex variables of degree \(\leqslant k\) and fix \(w\in V\). We prove that the operator \(F_w\) is the unique minimal extensionof \(R_w\) in the set \(\mathcal P _X(L_1(Z), V)\). Indeed, by Theorem 17 it is sufficient to show that if \(g\in V\) satisfies the conditions \(\text{ sgn}(g)(z)=\text{ sgn}(w)(z)\) for \(z\in Z\), \(\Vert g|_{Z}\Vert _1=1\) and \(g/w\in L_{\infty }(Z)\), then \(g|_Z=w|_Z/\Vert w|_Z\Vert _1\). Take \(g\) as we mentioned above. Define \(F_1=g+iw\), \(F_2=g-iw\). Observe that \(F_1\) and \(F_2\) are holomorphic functions on \(D\) and continuous in \(\bar{D}\). By assumptions, \(g(z)\overline{w(z)}\in \mathbb{R }]\) for \(z\in Z\) and

$$\begin{aligned} |F_1(z)|=|F_2(z)|=\sqrt{|g(z)|^2+|w(z)|^2}, z\in Z. \end{aligned}$$

Applying twice Theorem 22, we get that \(|F_1(z)|=|F_2(z)|\) for \(z\in D\). Put \(G=D\setminus \{F_2=0\}\) and \(h(z)=F_1(z)/F_2(z)\) for \(z\in G\). Note that \(h\) is holomorphic in the domain \(G\) and \(|h|=1\) on \(G\). Since nonconstant holomorphic functions are open mappings, \(h|_{G}=c\) for some \(c\in \mathbb{C }\). A condition

$$\begin{aligned} \Vert g|_{Z}\Vert _1=\left\Vert\frac{w|_{Z}}{\Vert w|_{Z}\Vert _1}\right\Vert_1=1 \end{aligned}$$

implies that \(g|_{Z}=w|_{Z}/\Vert w|_{Z}\Vert _1\).

Reasoning as in Example 23 we get:

Example 24

(Uniqueness) Let \(Z\) be an \(n\)-circular domain, \(n\geqslant 2\). Assume that \(V\) is a space of algebraic polynomials of \(n\) complex variables of degree \(\leqslant k\) and fix \(w\in V\). Then the operator \(F_w\) is the unique minimal extensionof \(R_w\) in the set \(\mathcal P _X(L_1(Z), V)\).

Now we give an example of \(n\)-circular set\(Z\), a smooth space \(V\) and \(w\in V\), for which the operator \(F_w\) is not a unique minimal extensionof \(R_w\) in the set \(\mathcal P _X(L_1(Z), V)\).

Example 25

(Nonuniqueness) Let \(V\) be a space of algebraic polynomials of \(n\) complex variables of degree \(\leqslant k\). Set \(Z=\mathbb{T }^n\). For \(s\in \mathbb{T }\) define

$$\begin{aligned} h(s)&= s^2+l(1+b)s+b,\\ k(s)&= s^2+m(1+b)s+b, \end{aligned}$$

where \(l,m\in (0,\infty )\setminus \{1\}, m\ne l, |b|=1, b\ne -1\) are such that polynomials \(h\) and \(k\) have all roots outside of \(\mathbb{T }\) and

$$\begin{aligned} ml(1+Reb)+(m+l)Re((1+\overline{b})s)\geqslant 0 \text{ for} s\in \mathbb{T }. \end{aligned}$$

Observe that by our assumptions,

$$\begin{aligned} h(s)\overline{k(s)}&= (s^2+b+l(1+b)s)(\overline{s}^2+\overline{b}+m(1+\overline{b})\overline{s})\\&= |s^2+b|^2\!+\!m(1+\overline{b})s\!+\!m(1\!+\!b)\overline{s}\!+\!l(1+b)\overline{s}\!+\!l(1+\overline{b})s\!+\!ml|1+b|^2 \\&= |s^2+b|^2+2ml(1+Re b)+2(m+l)Re[(1+\overline{b})s]\geqslant 0. \end{aligned}$$

Consider any polynomial \(l\) of \(n\) variables of degree \(k-2\). Put

$$\begin{aligned} w(s,t)=h(s)l(s,t),\ \ g(s,t)=k(s)l(s,t)\quad \text{ for} s\in \mathbb{T }, t\in \mathbb{T }^{n-1}. \end{aligned}$$

Then \(g,w\in V\), \(g/w\in L_{\infty }(Z)\) and \(w(s,t)\overline{g(s,t)}=h(s)\overline{k(s)}|l(s,t)|^2\geqslant 0\) for \((s,t)\in \mathbb{T }^n\). Hence \(\text{ sgn}(w)=\text{ sgn}(g)\) and by Theorem 17, \(F_w\) is not a minimal extensionof \(R_w\) in the set \(M^{X}_{w}\). In this case the assertion of Theorem 19 is fulfilled.

Other examples in which there is more than one minimal extensionof \(R_w\) can be found in [19].

Notice that methods of proofs used in this paper can be applied not only in the case of \(n\)-circular sets, but also to \(Z=[0,2\pi ]^n\times \mathbb{T }^n\). More precisely, let \(L_1([0,2\pi ]^n\times \mathbb{T }^n)\) denote the space of complex-valued functions, Lebesgue measurable on \([0,2\pi ]^n\times \mathbb{T }^n\) and such that

$$\begin{aligned} \Vert f\Vert _1=(1/2\pi )^{2n}\int \int \limits _{I\times I}|f(u,e^{is})|\,duds=\int \int \limits _{I\times I}|f(u,e^{is})|\,d\mu (u,s)<\infty , \end{aligned}$$

where

$$\begin{aligned} \mu =\lambda _I\times \lambda _I, \ \lambda _I\text{---a} \text{ normalized} \text{ Lebesgue} \text{ measure} \text{ on} I=[0,2\pi ]^n. \end{aligned}$$
(35)

For \(\alpha =(\alpha _1,\ldots , \alpha _n)\in \mathbb{Z }^n\) and \(r=(r_1,\ldots , r_n)\in [0,2\pi ]^n\) put

$$\begin{aligned} G^{\alpha }&= \{f: f(r)=f_1(r_1)\cdot \ldots \cdot f_n(r_n),\quad f_j=\cos (\alpha _j\cdot )\ \text{ or}\nonumber \\ f_j&= \sin (\alpha _j\cdot ):j=1,\ldots ,n\} \end{aligned}$$
(36)

Let

$$\begin{aligned} G^{\alpha }= \{G^{\alpha }_{j}: j=1,\ldots , 2^n\}. \end{aligned}$$

Let \(\alpha \in \mathbb{Z }^n\), \(\beta \in \mathbb{Z }^n\) and \(j\in \{1,\ldots , 2^n\}\). Define a function

$$\begin{aligned} G^{\alpha ,\beta }_{j}: L_1([0,2\pi ]^n\times \mathbb{T }^n)\ni (r,e^{it})\mapsto G^{\alpha }_{j}(r)e^{\beta }(e^{it})\in \mathbb{C } , \end{aligned}$$
(37)

where \(e^{\beta }\) is given by the formula (11). Let

$$\begin{aligned} V&= \text{ span}\{G^{\alpha ^p,\beta ^p}_{j}: p=1,\ldots ,k, j=1,\ldots , 2^n\ \},\nonumber \\ w&= \sum \limits _{\begin{array}{c} p=1\ldots ,k\\ j=1,\ldots , 2^n \end{array}}b_{p,j}G^{\alpha ^p,\beta ^p}_{j}, \end{aligned}$$
(38)

for some \(\alpha ^p\in \mathbb{Z }^n\), \(\beta ^p\in \mathbb{Z }^n\) such that \((\alpha ^p,\beta ^p)\ne (\alpha ^m,\beta ^m)\) for \(p\ne m\) and \(b_{p,j}\in \mathbb{C }\). Set

$$\begin{aligned} (F_wf)(r,e^{it})=(f*w)(r,e^{it})=\int \int \limits _{I\times I} f(u,e^{is})w(r-u,e^{i(t-s)})\,d\mu (u,s).\qquad \end{aligned}$$
(39)

Applying a group of isometries \(\tilde{G}=\{T_{u,s}(f)(r,e^{it})=f(r+u,e^{i(s+t)})\}_{u,s\in [0,2\pi ]^n}\) instead of \(G=\{T_t\}_{t\in [0,2\pi ]^n}\) [see (14)] and reasoning in the same manner as in the case of \(n\)-circular sets, we can obtain the following:

Theorem 26

The operator \(F_w\) is the unique minimal extensionof \(R_w\) in the set \(\mathcal P _{R_w}(L_1([0,2\pi ]^n\times \mathbb{T }^n),V)\) if and only if\(w/\Vert w\Vert _1\) is a unique norming point \(g\in V\) for a functional

$$\begin{aligned} L_1([0,2\pi ]^n\times \mathbb{T }^n)\ni h\mapsto \int \int \limits _{I\times I} h(r,e^{it})\text{ sgn}(w)(r,e^{it})\,d\mu (r,t) \end{aligned}$$

such that \(g/w\in L_{\infty }([0,2\pi ]^n\times \mathbb{T }^n)\).

Here we have the uniqueness in the whole space \(\mathcal P _{R_w}(L_1([0,2\pi ]^n\times \mathbb{T }^n),V)\) because the group \(\tilde{G}\) is so big that \(F_w\) is the unique operator in \(\mathcal P _{R_w}(L_1([0,2\pi ]^n\times \mathbb{T }^n),V)\) commuting with \(\tilde{G}\). As a consequence, \(F_w\) has a minimal norm in the space \(\mathcal P _{R_w}(L_1(Z), V)\), which is not true in the case of an arbitrary \(n\)-circular set.