Skip to main content
Log in

Non-metric two-component Euler equations on the circle

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

A geometric approach to the study of natural two-component generalizations of the periodic Hunter–Saxton is presented. We give rigorous evidence of the fact that these systems can be realized as geodesic equations with respect to symmetric linear connections on the semidirect product of a suitable subgroup of the diffeomorphism group of the circle \({{\text{\sc Diff}}(\mathbb{S})}\) with the space of smooth functions on the circle. An immediate consequence of this approach is a well-posedness result of the corresponding Cauchy problems in the smooth category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16, 319–361 (1966)

    Article  Google Scholar 

  2. Chen M., Liu S., Zhang Y.: A 2-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75, 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Constantin A., Escher J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75–91 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Constantin A., Ivanov R.I.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372, 7129–7132 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin A., Kolev B.: On the geometric approach to the motion of inertial mechanical systems. J. Phys. A 35, R51–R79 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin A., Kolev B.: Geodesic flow on the diffeomorphism group of the circle. Comment. Math. Helv. 78, 787–804 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cho C.-H., Wunsch M.: Global and singular solutions to the generalized Proudman–Johnson equation. J. Differ. Equ. 249, 392–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ebin D.G., Marsden J.: Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 92, 102–163 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Escher J., Lechtenfeld O., Yin Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19, 493–513 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Escher, J., Kolev, B.: The Degasperis–Procesi equation as a non-metric Euler equation. Math. Z. (2010). doi:10.1007/s00209-010-0778-2

  11. Escher J., Kohlmann M., Lenells J.: Two-component generalizations of the periodic Camassa–Holm and Degasperis–Procesi equations. J. Geom. Phys. 61, 436–452 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Escher, J., Kolev, B., Wunsch, M: The geometry of a Vorticity Model Equation. arXiv:1010.4844 (2010)

  13. Escher, J., Seiler, J.: The periodic b-equation and Euler equations on the circle. J. Math. Phys. 51(053101), 6 (2010)

    Google Scholar 

  14. Escher, J., Wunsch, M.: Restrictions on the Geometry of the Periodic Vorticity Equation. arXiv:1009.1029 (2010)

  15. Guieu, L., Roger, C.: L’algèbre et le groupe de Virasoro. In: Aspects géométriques et algébriques, généralisations. Les Publications CRM, Montreal (2007)

  16. Holm D., Marsden J., Ratiu T.: The Euler–Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holm D., Tronci C.: Geodesic flows on semidirect-product Lie groups: geometry of singular measure-valued solutions. Proc. R. Soc. A 465, 457–476 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hunter J.K., Saxton R.: Dynamics of director fields. SIAM J. Appl. Math. 51, 1498–1521 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ivanov R.: Two-component integrable systems modelling shallow water waves: the constant vorticity case. Wave Motion 46, 389–396 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Khesin B., Lenells J., Misiołek G.: Generalized Hunter–Saxton equation and the geometry of the group of circle diffeomorphisms. Math. Ann. 342, 617–656 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khesin B., Misiolek G.: Euler equations on homogeneous spaces and Virasoro orbits. Adv. Math. 176, 116–144 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kohlmann, M.: A geometric approach to the μ-variant of the periodic b-equation and some two-component extensions. PhD Thesis, Leibniz University, Hannover (2010)

  23. Kolev B.: Lie groups and mechanics: an introduction. J. Nonlinear Math. Phys. 11, 480–498 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lang S.: Differential and Riemannian Manifolds. GTM 160, Springer, New York (1995)

    Book  Google Scholar 

  25. Lenells J.: Riemannian geometry on the diffeomorphism group of the circle. Ark. Mat. 45, 297–325 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lenells J.: The Hunter–Saxton equation: a geometric approach. SIAM J. Math. Anal. 40, 266–277 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Misiołek G.: A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 24, 203–208 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Okamoto H.: Well-posedness of the generalized Proudman–Johnson equation without viscosity. J. Math. Fluid Mech. 11, 46–59 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shkoller S.: Geometry and curvature of diffeomorphism groups with H 1 metric and mean hydrodynamics. J. Funct. Anal. 160, 337–365 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wunsch M.: On the Hunter–Saxton system. Discrete Contin. Dyn. Syst. Ser. B 12, 647–656 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wunsch M.: The generalized Hunter–Saxton system. SIAM J. Math. Anal. 42, 1286–1304 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zuo, Dafeng: A 2-component μ-Hunter–Saxton equation. arXiv:1010.4454

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Escher.

Additional information

Communicated by Adrian Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escher, J. Non-metric two-component Euler equations on the circle. Monatsh Math 167, 449–459 (2012). https://doi.org/10.1007/s00605-011-0323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-011-0323-3

Keywords

Mathematics Subject Classification (2000)

Navigation