Skip to main content
Log in

One-step synthesis of chiral molecularly imprinted polymer TiO2 nanoparticles for enantioseparation of phenylalanine in coated capillary electrochromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel chiral molecularly imprinted polymer TiO2 nanoparticle was synthesized in one step for the enantioseparation of phenylalanine in coated capillary electrochromatography. To the author’s knowledge, the chiral molecularly imprinted nanomaterials have still not been reported, to date. Chiral molecularly imprinted TiO2 nanomaterials (L-PHE@MIP(APTES-TEOS)@TiO2) were used as a chiral stationary phase to separate the phenylalanine enantiomers in coated capillary electrochromatography (CEC). The imprinted coating was prepared from L-phenylalanine (L-PHE) as the template, TiO2 nanoparticles (NPs) as the support substrate, 3-aminopropyltriethoxysilane (APTES) as the functional monomer, and tetraethyl silicate (TEOS) as the cross-linker. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) were used for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2@capillary. Fourier transform infrared spectra (FT-IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA) were employed for the characterization of the L-PHE@MIP(APTES-TEOS)@TiO2. The effects of the applied voltage, pH value, buffer concentration, and acetonitrile content were investigated  experimentally to determine the optimum conditions for CEC. The best resolution for  phenylalanine enantiomers by CEC reached a value of 3.48. In addition, the specific recognition effect of L-PHE@MIP(APTES-TEOS)@TiO2 on PHE enantiomers was studied by selective experiment. Finally, adsorption kinetic research, adsorption equilibrium isotherm study, and adsorption thermodynamic experiment were carried out to investigate the separation mechanism of PHE enantiomers with the L-PHE@MIP (APTES-TEOS)@TiO2@capillary, and the results were consistent with those of CEC experiments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Zhou J, Sheth S, Zhou H, Song Q (2020) Highly selective detection of l-Phenylalanine by molecularly imprinted polymers coated Au nanoparticles via surface-enhanced Raman scattering. Talanta 211:120745. https://doi.org/10.1016/j.talanta.2020.120745

    Article  CAS  PubMed  Google Scholar 

  2. Romero AG, Darlington WH, McMillan MW (1997) Synthesis of the selective D2 receptor agonist PNU-95666E from D-phenylalanine using a sequential oxidative cyclization strategy. J Org Chem 62:6582–6587. https://doi.org/10.1021/jo970526a

    Article  CAS  Google Scholar 

  3. Tang S, Wu X, Zhao P, Tang K, Chen Y, Fu J, Lei H, Yang Z, Zhang Z (2022) Ratiometric fluorescence capillary sensor-integrated molecular imprinting for simultaneous detection of two biological indicators of Parkinson’s disease. Anal Chem. https://doi.org/10.1021/acs.analchem.2c03926

    Article  PubMed  PubMed Central  Google Scholar 

  4. Feng L, Wang H, Feng T, Yan B, Yu Q, Zhang J, Guo Z, Yuan Y, Ma C, Liu T (2022) In situ synthesis of uranyl-imprinted nanocage for selective uranium recovery from seawater. Angewandte Chemie 134:e202101015. https://doi.org/10.1002/anie.202101015

    Article  CAS  Google Scholar 

  5. Shah NS, Thotathil V, Zaidi SA, Sheikh H, Mohamed M, Qureshi A, Sadasivuni KK (2022) Picomolar or beyond limit of detection using molecularly imprinted polymer-based electrochemical sensors: a review. Biosensors 12:1107. https://doi.org/10.3390/bios12121107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. BelBruno JJ (2018) Molecularly imprinted polymers. Chem Rev 119:94–119. https://doi.org/10.1021/acs.chemrev.8b00171

    Article  CAS  PubMed  Google Scholar 

  7. Liu CY, Lin CC (2004) An insight into molecularly imprinted polymers for capillary electrochromatography. Electrophoresis 25:3997–4007. https://doi.org/10.1002/elps.200406160

    Article  CAS  PubMed  Google Scholar 

  8. Mu LN, Wei ZH, Liu ZS (2015) Current trends in the development of molecularly imprinted polymers in CEC. Electrophoresis 36:764–772. https://doi.org/10.1002/elps.201400389

    Article  CAS  PubMed  Google Scholar 

  9. Katz A, Davis ME (2000) Molecular imprinting of bulk, microporous silica. Nature 403:286–289. https://doi.org/10.1038/35002032

    Article  CAS  PubMed  Google Scholar 

  10. Zaidi SA, Cheong WJ (2009) Preparation of an open-tubular capillary column with a monolithic layer of S-ketoprofen imprinted and 4-styrenesulfonic acid incorporated polymer and its enhanced chiral separation performance in capillary electrochromatography. J Chromatogr A 1216:2947–2952. https://doi.org/10.1016/j.chroma.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  11. Akgönüllü S, Yavuz H, Denizli A (2017) Preparation of imprinted cryogel cartridge for chiral separation of l-phenylalanine. Artif Cells Nanomed Biotechnol 45:800–807. https://doi.org/10.1080/21691401.2016.1175445

    Article  CAS  PubMed  Google Scholar 

  12. Xie X, Pan X, Han S, Wang S (2015) Development and characterization of magnetic molecularly imprinted polymers for the selective enrichment of endocrine disrupting chemicals in water and milk samples. Anal Bioanal Chem 407:1735–1744. https://doi.org/10.1007/s00216-014-8425-0

    Article  CAS  PubMed  Google Scholar 

  13. Zhang H (2020) Molecularly imprinted nanoparticles for biomedical applications. Adv Mater 32:1806328. https://doi.org/10.1002/adma.201806328

    Article  CAS  Google Scholar 

  14. Zhai J, Zhao M, Cao X, Li M, Zhao M (2018) Metal-ion-responsive bionanocomposite for selective and reversible enzyme inhibition. J Am Chem Soc 140:16925–16928. https://doi.org/10.1021/jacs.8b10848

    Article  CAS  PubMed  Google Scholar 

  15. Zhang J, Qin L, Yang Y, Liu X (2021) Porous carbon nanospheres aerogel based molecularly imprinted polymer for efficient phenol adsorption and removal from wastewater. Sep Purif Technol 274:119029. https://doi.org/10.1016/j.seppur.2021.119029

    Article  CAS  Google Scholar 

  16. Cao Y, Huang Z, Luo L, Li J, Li P, Liu X (2021) Rapid and selective extraction of norfloxacin from milk using magnetic molecular imprinting polymers nanoparticles. Food Chem 353:129464. https://doi.org/10.1016/j.foodchem.2021.129464

    Article  CAS  PubMed  Google Scholar 

  17. Cui F, Zhou Z, Zhou HS (2020) Molecularly imprinted polymers and surface imprinted polymers based electrochemical biosensor for infectious diseases. Sensors 20:996. https://doi.org/10.3390/s20040996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang W, Li Y, Wang Q, Wang C, Wang P, Mao K (2013) Performance evaluation and application of surface-molecular-imprinted polymer-modified TiO2 nanotubes for the removal of estrogenic chemicals from secondary effluents. Environ Sci Pollut Res 20:1431–1440. https://doi.org/10.1007/s11356-012-0983-0

    Article  CAS  Google Scholar 

  19. Yuan W, Zhu B, Li X-Y, Hansen TW, Ou Y, Fang K, Yang H, Zhang Z, Wagner JB, Gao Y (2020) Visualizing H2O molecules reacting at TiO2 active sites with transmission electron microscopy. Science 367:428–430. https://doi.org/10.1126/science.aay2474

    Article  CAS  PubMed  Google Scholar 

  20. Ma X, Kan Z, Du Y, Yang J, Feng Z, Zhu X, Chen C (2019) Enantioseparation of amino alcohol drugs by nonaqueous capillary electrophoresis with a maltobionic acid-based ionic liquid as the chiral selector. Analyst 144:7468–7477. https://doi.org/10.1039/C9AN01162E

    Article  CAS  PubMed  Google Scholar 

  21. Tang S, Wu X, Zhao P, Tang K, Chen Y, Fu J, Zhou S, Yang Z, Zhang Z (2022) A near-infrared fluorescence capillary imprinted sensor for chiral recognition and sensitive detection of l-histidine. Anal Chim Acta 1206:339794. https://doi.org/10.1016/j.aca.2022.339794

    Article  CAS  PubMed  Google Scholar 

  22. Bao T, Tang P, Mao Z, Chen Z (2016) An immobilized carboxyl containing metal-organic framework-5 stationary phase for open-tubular capillary electrochromatography. Talanta 154:360–366. https://doi.org/10.1016/j.talanta.2016.03.089

    Article  CAS  PubMed  Google Scholar 

  23. Wang M, Wen B, Fan B, Zhang H (2020) Study on adsorption mechanism of silicate adsorbents with different morphologies and pore structures towards formaldehyde in water. Colloids Surf: A Physicochem Eng Aspects 599:124887. https://doi.org/10.1016/j.colsurfa.2020.124887

    Article  CAS  Google Scholar 

  24. Wang H, Huang F, Zhao Z-L, Wu R-R, Xu W-X, Wang P, Xiao R-B (2021) High-efficiency removal capacities and quantitative adsorption mechanisms of Cd2+ by thermally modified biochars derived from different feedstocks. Chemosphere 272:129594. https://doi.org/10.1016/j.chemosphere.2021.129594

    Article  CAS  PubMed  Google Scholar 

  25. Song X, Liu D, Zhang G, Frigon M, Meng X, Li K (2014) Adsorption mechanisms and the effect of oxytetracycline on activated sludge. Biores Technol 151:428–431. https://doi.org/10.1016/j.biortech.2013.10.055

    Article  CAS  Google Scholar 

  26. Bandura L, Franus M, Madej J, Kołodyńska D, Hubicki Z (2020) Zeolites in phenol removal in the presence of Cu (II) ions—comparison of sorption properties after chitosan modification. Materials 13:643. https://doi.org/10.3390/ma13030643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lin J-M, Nakagama T, Wu X-Z, Uchiyama K, Hobo T (1997) Capillary electrochromatographic separation of amino acid enantiomers with molecularly imprinted polymers as chiral recognition agents. Fresenius J Anal Chem 357:130–132. https://doi.org/10.1007/s002160050126

    Article  CAS  Google Scholar 

  28. Wang X-N, Liang R-P, Meng X-Y, Qiu J-D (2014) One-step synthesis of mussel-inspired molecularly imprinted magnetic polymer as stationary phase for chip-based open tubular capillary electrochromatography enantioseparation. J Chromatogr A 1362:301–308. https://doi.org/10.1016/j.chroma.2014.08.044

    Article  CAS  PubMed  Google Scholar 

  29. Song W-F, Zhao Q-L, Zhou X-J, Zhang L-S, Huang Y-P, Liu Z-S (2019) A star-shaped molecularly imprinted polymer derived from polyhedral oligomeric silsesquioxanes with improved site accessibility and capacity for enantiomeric separation via capillary electrochromatography. Microchim Acta 186:1–7. https://doi.org/10.1007/s00604-018-3151-5

    Article  CAS  Google Scholar 

  30. Derazshamshir A, Göktürk I, Yılmaz F, Denizli A (2021) S-citalopram imprinted monolithic columns for capillary electrochromatography enantioseparations. Electrophoresis 42:2672–2682. https://doi.org/10.1002/elps.202100222

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Project of National Natural Science Foundation of China (No. 82073809).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingxiang Du.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 807 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, G., Chen, J. et al. One-step synthesis of chiral molecularly imprinted polymer TiO2 nanoparticles for enantioseparation of phenylalanine in coated capillary electrochromatography. Microchim Acta 190, 279 (2023). https://doi.org/10.1007/s00604-023-05854-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05854-4

Keywords

Navigation