Skip to main content

Advertisement

Log in

3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The combination of CO2 laser ablation and electrochemical surface treatments is demonstrated to improve the electrochemical performance of carbon black/polylactic acid (CB/PLA) 3D-printed electrodes through the growth of flower-like Na2O nanostructures on their surface. Scanning electron microscopy images revealed that the combination of treatments ablated the electrode’s polymeric layer, exposing a porous surface where Na2O flower-like nanostructures were formed. The electrochemical performance of the fabricated electrodes was measured by the reversibility of the ferri/ferrocyanide redox couple presenting a significantly improved performance compared with electrodes treated by only one of the steps. Electrodes treated by the combined method also showed a better electrochemical response for tyrosine oxidation. These electrodes were used as a non-enzymatic tyrosine sensor for quantification in human urine samples. Two fortified urine samples were analyzed, and the recovery values were 106 and 109%. The LOD and LOQ for tyrosine determination were 0.25 and 0.83 μmol L−1, respectively, demonstrating that the proposed devices are suitable sensors for analyses of biological samples, even at low analyte concentrations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rocha DP, Rocha RG, Castro SVF et al (2021) Posttreatment of 3D-printed surfaces for electrochemical applications: a critical review on proposed protocols. Electrochem Sci Adv. https://doi.org/10.1002/elsa.202100136

  2. Carrasco-Correa EJ, Simó-Alfonso EF, Herrero-Martínez JM, Miró M (2021) The emerging role of 3D printing in the fabrication of detection systems. TrAC - Trends Anal Chem 136. https://doi.org/10.1016/j.trac.2020.116177

  3. Ngo TD, Kashani A, Imbalzano G et al (2018) Additive manufacturing (3D printing): a review of materials, methods, applications and challenges. Compos Part B Eng 143:172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  4. Cardoso RM, Kalinke C, Rocha RG et al (2020) Additive-manufactured (3D-printed) electrochemical sensors: a critical review. Anal Chim Acta 1118:73–91. https://doi.org/10.1016/j.aca.2020.03.028

    Article  CAS  Google Scholar 

  5. Ambrosi A, Pumera M (2016) 3D-printing technologies for electrochemical applications. Chem Soc Rev 45:2740–2755. https://doi.org/10.1039/c5cs00714c

    Article  CAS  Google Scholar 

  6. Ataide VN, Rocha DP, de Siervo A et al (2021) Additively manufactured carbon/black-integrated polylactic acid 3D printed sensor for simultaneous quantification of uric acid and zinc in sweat. Microchim Acta 188:1–11. https://doi.org/10.1007/s00604-021-05007-5

    Article  CAS  Google Scholar 

  7. Horst DJ, Junior PPA (2019) 3D-printed conductive filaments based on carbon nanostructures embedded in a polymer matrix. Int J Appl Nanotechnol Res 4:26–40. https://doi.org/10.4018/ijanr.2019010103

    Article  Google Scholar 

  8. Redondo E, Pumera M (2021) Fully metallic copper 3D-printed electrodes via sintering for electrocatalytic biosensing. Appl Mater Today 25:101253. https://doi.org/10.1016/j.apmt.2021.101253

    Article  Google Scholar 

  9. dos Santos PL, Katic V, Loureiro HC et al (2019) Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: role of exposed graphene sheets. Sens. Actuators B Chem. 281:837–848. https://doi.org/10.1016/j.snb.2018.11.013

    Article  CAS  Google Scholar 

  10. Richter EM, Rocha DP, Cardoso RM et al (2019) Complete additively manufactured (3D-printed) electrochemical sensing platform. Anal Chem 91:12844–12851. https://doi.org/10.1021/acs.analchem.9b02573

    Article  CAS  Google Scholar 

  11. Gusmão R, Browne MP, Sofer Z, Pumera M (2019) The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochem commun 102:83–88. https://doi.org/10.1016/j.elecom.2019.04.004

    Article  CAS  Google Scholar 

  12. Silva VAOP, Fernandes-Junior WS, Rocha DP et al (2020) 3D-printed reduced graphene oxide/polylactic acid electrodes: a new prototyped platform for sensing and biosensing applications. Biosens Bioelectron 170:112684. https://doi.org/10.1016/j.bios.2020.112684

    Article  CAS  Google Scholar 

  13. Pereira JFS, Rocha RG, Castro SVF et al (2021) Reactive oxygen plasma treatment of 3D-printed carbon electrodes towards high-performance electrochemical sensors. Sens. Actuators B Chem. 347. https://doi.org/10.1016/j.snb.2021.130651

  14. Rocha DP, Ataide VN, de Siervo A et al (2021) Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture. Chem Eng J 425:130594. https://doi.org/10.1016/j.cej.2021.130594

    Article  CAS  Google Scholar 

  15. Rocha DP, Albuquerque RBA, Oliveira GP et al (2021) Electrochemical sensors enabled by 3D printing: a tutorial for beginners. In: Reference Module in Biomedical Sciences, 1st edn. Elsevier, pp 1–16

    Google Scholar 

  16. Cardoso RM, Silva PRL, Lima AP et al (2020) 3D-printed graphene/polylactic acid electrode for bioanalysis: biosensing of glucose and simultaneous determination of uric acid and nitrite in biological fluids. Sens. Actuators B Chem. 307:127621. https://doi.org/10.1016/j.snb.2019.127621

    Article  CAS  Google Scholar 

  17. Rocha DP, Squissato AL, da Silva SM et al (2020) Improved electrochemical detection of metals in biological samples using 3D-printed electrode: chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim Acta 335:1–11. https://doi.org/10.1016/j.electacta.2020.135688

    Article  CAS  Google Scholar 

  18. Stefano JS, Guterres Silva LR, Rocha RG et al (2021) New conductive filament ready-to-use for 3D-printing electrochemical (bio)sensors: towards the detection of SARS-CoV-2. Anal Chim Acta 1191:339372. https://doi.org/10.1016/j.aca.2021.339372

    Article  CAS  Google Scholar 

  19. Foster CW, Elbardisy HM, Down MP et al (2020) Additively manufactured graphitic electrochemical sensing platforms. Chem Eng J 381:122343. https://doi.org/10.1016/j.cej.2019.122343

    Article  CAS  Google Scholar 

  20. Gnanasekaran K, Heijmans T, van Bennekom S et al (2017) 3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28. https://doi.org/10.1016/j.apmt.2017.04.003

    Article  Google Scholar 

  21. Kwok SW, Goh KHH, Tan ZD et al (2017) Electrically conductive filament for 3D-printed circuits and sensors. Appl Mater Today 9:167–175. https://doi.org/10.1016/j.apmt.2017.07.001

    Article  Google Scholar 

  22. Shin JH, Seo KD, Park H, Park DS (2021) Performance improvement of acid pretreated 3D-printing composite for the heavy metal ions analysis. Electroanalysis 33:1707–1714. https://doi.org/10.1002/elan.202100077

    Article  CAS  Google Scholar 

  23. Cardoso RM, Castro SVF, Silva MNT et al (2019) 3D-printed flexible device combining sampling and detection of explosives. Sens. Actuators B Chem. 292:308–313. https://doi.org/10.1016/j.snb.2019.04.126

    Article  CAS  Google Scholar 

  24. Glowacki MJ, Cieslik M, Sawczak M et al (2021) Helium-assisted, solvent-free electro-activation of 3D printed conductive carbon-polylactide electrodes by pulsed laser ablation. Appl Surf Sci 556:149788. https://doi.org/10.1016/j.apsusc.2021.149788

    Article  CAS  Google Scholar 

  25. Novotný F, Urbanová V, Plutnar J, Pumera M (2019) Preserving fine structure details and dramatically enhancing electron transfer rates in graphene 3D-printed electrodes via thermal annealing: toward nitroaromatic explosives sensing. ACS Appl Mater Interfaces 11:35371–35375. https://doi.org/10.1021/acsami.9b06683

    Article  CAS  Google Scholar 

  26. Browne MP, Novotný F, Sofer Z, Pumera M (2018) 3D printed graphene electrodes’ electrochemical activation. ACS Appl Mater Interfaces 10:40294–40301. https://doi.org/10.1021/acsami.8b14701

    Article  CAS  Google Scholar 

  27. Manzanares Palenzuela CL, Novotný F, Krupička P et al (2018) 3D-printed graphene/polylactic acid electrodes promise high sensitivity in electroanalysis. Anal Chem 90:5753–5757. https://doi.org/10.1021/acs.analchem.8b00083

    Article  CAS  Google Scholar 

  28. Manzanares-Palenzuela CL, Hermanova S, Sofer Z, Pumera M (2019) Proteinase-sculptured 3D-printed graphene/polylactic acid electrodes as potential biosensing platforms: towards enzymatic modeling of 3D-printed structures. Nanoscale 11:12124–12131. https://doi.org/10.1039/c9nr02754h

    Article  CAS  Google Scholar 

  29. Vaněčková E, Bouša M, Nováková Lachmanová Š et al (2020) 3D printed polylactic acid/carbon black electrodes with nearly ideal electrochemical behaviour. J Electroanal Chem 857. https://doi.org/10.1016/j.jelechem.2019.113745

  30. Kalinke C, Neumsteir NV, Aparecido GDO et al (2020) Comparison of activation processes for 3D printed PLA-graphene electrodes: electrochemical properties and application for sensing of dopamine. Analyst 145:1207–1218. https://doi.org/10.1039/C9AN01926J

    Article  CAS  Google Scholar 

  31. Wirth DM, Sheaff MJ, Waldman JV et al (2019) Electrolysis activation of fused-filament-fabrication 3D-printed electrodes for electrochemical and spectroelectrochemical analysis. Anal Chem 91:5553–5557. https://doi.org/10.1021/acs.analchem.9b01331

    Article  CAS  Google Scholar 

  32. Redondo E, Muñoz J, Pumera M (2021) Green activation using reducing agents of carbon-based 3D printed electrodes: turning good electrodes to great. Carbon N Y 175:413–419. https://doi.org/10.1016/j.carbon.2021.01.107

    Article  CAS  Google Scholar 

  33. Harraz FA, Faisal M, Ismail AA et al (2019) TiO2/reduced graphene oxide nanocomposite as efficient ascorbic acid amperometric sensor. J Electroanal Chem 832:225–232. https://doi.org/10.1016/j.jelechem.2018.11.004

    Article  CAS  Google Scholar 

  34. Tripathy N, Kim DH (2018) Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg 5. https://doi.org/10.1186/s40580-018-0159-9

  35. Samarasekera C, Tan B, Venkatakrishnan K (2012) Flower-like Na2O nanotip synthesis via femtosecond laser ablation of glass. Nanoscale Res Lett 7:1–9. https://doi.org/10.1186/1556-276X-7-404

    Article  CAS  Google Scholar 

  36. Yang Y, Song Y, Bo X et al (2020) A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat Biotechnol 38:217–224. https://doi.org/10.1038/s41587-019-0321-x

    Article  CAS  Google Scholar 

  37. Matias TA, Rocha RG, Faria LV et al (2022) Infrared laser-induced graphene sensor for tyrosine detection. ChemElectroChem 202200339. https://doi.org/10.1002/celc.202200339

  38. Mendes LF, de Siervo A, Reis de Araujo W, Longo Cesar Paixão TR (2020) Reagentless fabrication of a porous graphene-like electrochemical device from phenolic paper using laser-scribing. Carbon N Y 159:110–118. https://doi.org/10.1016/j.carbon.2019.12.016

    Article  CAS  Google Scholar 

  39. Katseli V, Thomaidis N, Economou A, Kokkinos C (2020) Miniature 3D-printed integrated electrochemical cell for trace voltammetric Hg(II) determination. Sens. Actuators B Chem. 308:127715. https://doi.org/10.1016/j.snb.2020.127715

    Article  CAS  Google Scholar 

  40. Abdalla A, Hamzah HH, Keattch O et al (2020) Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters. Electrochim Acta 354:136618. https://doi.org/10.1016/j.electacta.2020.136618

    Article  CAS  Google Scholar 

  41. Koterwa A, Kaczmarzyk I, Mania S et al (2022) The role of electrolysis and enzymatic hydrolysis treatment in the enhancement of the electrochemical properties of 3D-printed carbon black/poly(lactic acid) structures. Appl Surf Sci 574. https://doi.org/10.1016/j.apsusc.2021.151587

  42. Bystron T, Sramkova E, Dvorak F, Bouzek K (2019) Glassy carbon electrode activation — a way towards highly active, reproducible and stable electrode surface. Electrochim Acta 299:963–970. https://doi.org/10.1016/j.electacta.2019.01.066

    Article  CAS  Google Scholar 

  43. Pimenta MA, Dresselhaus G, Dresselhaus MS et al (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291. https://doi.org/10.1039/b613962k

    Article  CAS  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, Second edn. John Wiley & Sons, New York

    Google Scholar 

  45. Silva-Neto HA, Santhiago M, Duarte LC, Coltro WKT (2021) Fully 3D printing of carbon black-thermoplastic hybrid materials and fast activation for development of highly stable electrochemical sensors. Sensors Actuators B Chem 349:130721. https://doi.org/10.1016/j.snb.2021.130721

    Article  CAS  Google Scholar 

  46. Ferrari AGM, Foster CW, Kelly PJ et al (2018) Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors 8:1–10. https://doi.org/10.3390/bios8020053

    Article  CAS  Google Scholar 

  47. Nicholson RS (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal Chem 37:1351–1355. https://doi.org/10.1021/ac60230a016

    Article  CAS  Google Scholar 

  48. Razavian AS, Ghoreishi SM, Esmaeily AS et al (2014) Simultaneous sensing of L-tyrosine and epinephrine using a glassy carbon electrode modified with nafion and CeO2 nanoparticles. Microchim Acta 181:1947–1955. https://doi.org/10.1007/s00604-014-1284-8

    Article  CAS  Google Scholar 

  49. Zil’berg RA, Maistrenko VN, Kabirova LR et al (2020) A chiral voltammetric sensor based on a paste electrode modified by cyanuric acid for the recognition and determination of tyrosine enantiomers. J Anal Chem 75:101–110. https://doi.org/10.1134/S1061934820010189

    Article  Google Scholar 

  50. Veloso WB, de FO AAT, Ribeiro LK et al (2022) Rapid and sensitivity determination of macrolides antibiotics using disposable electrochemical sensor based on super P carbon black and chitosan composite. Microchem J 172. https://doi.org/10.1016/j.microc.2021.106939

  51. Kanchana P, Lavanya N, Sekar C (2014) Development of amperometric l-tyrosine sensor based on Fe-doped hydroxyapatite nanoparticles. Mater Sci Eng C 35:85–91. https://doi.org/10.1016/j.msec.2013.10.013

    Article  CAS  Google Scholar 

  52. Habibi E, Heidari H (2016) Renewable surface carbon-composite electrode bulk modified with GQD-RuCl3 nano-composite for high sensitive detection of l-tyrosine. Electroanalysis 28:2559–2564. https://doi.org/10.1002/elan.201600010

    Article  CAS  Google Scholar 

  53. Karimi-Maleh H, Ganjali MR, Norouzi P, Bananezhad A (2017) Amplified nanostructure electrochemical sensor for simultaneous determination of captopril, acetaminophen, tyrosine and hydrochlorothiazide. Mater Sci Eng C 73:472–477. https://doi.org/10.1016/j.msec.2016.12.094

    Article  CAS  Google Scholar 

  54. Foroughi MM, Tajik S (2017) SiO2@Fe3O4 nanocomposite decorated graphene modified carbon ionic liquid electrode as an electrochemical sensor for the determination of tyrosine. Anal Bioanal Electrochem 9:495–505

    CAS  Google Scholar 

  55. Samadzadeh A, Sheikhshoaie I, Karimi-Maleh H (2018) Simultaneous determination of epinephrine and tyrosine using a glassy carbon electrode amplified with ZnO-Pt/CNTs nanocomposite. Curr Anal Chem 15:166–171. https://doi.org/10.2174/1573411014666180313115001

    Article  CAS  Google Scholar 

  56. Zou J, Mao D, Wee ATS, Jiang J (2019) Micro/nano-structured ultrathin g-C 3 N 4/Ag nanoparticle hybrids as efficient electrochemical biosensors for L-tyrosine. Appl Surf Sci 467–468:608–618. https://doi.org/10.1016/j.apsusc.2018.10.187

    Article  CAS  Google Scholar 

  57. Zribi R, Maalej R, Messina E et al (2020) Exfoliated 2D-MoS2 nanosheets on carbon and gold screen printed electrodes for enzyme-free electrochemical sensing of tyrosine. Sens. Actuators B Chem. 303:127229. https://doi.org/10.1016/j.snb.2019.127229

    Article  CAS  Google Scholar 

  58. Raril C, Manjunatha JG, Ravishankar DK et al (2020) Validated electrochemical method for simultaneous resolution of tyrosine, uric acid, and ascorbic acid at polymer modified nano-composite paste electrode. Surf Eng Appl Electrochem 56:415–426. https://doi.org/10.3103/S1068375520040134

    Article  Google Scholar 

  59. Fiore L, De Lellis B, Mazzaracchio V et al (2022) Smartphone-assisted electrochemical sensor for reliable detection of tyrosine in serum. Talanta 237:122869. https://doi.org/10.1016/j.talanta.2021.122869

    Article  CAS  Google Scholar 

  60. Davison AS, Milan AM, Hughes AT et al (2015) Serum concentrations and urinary excretion of homogentisic acid and tyrosine in normal subjects. Clin Chem Lab Med 53:e81–e83. https://doi.org/10.1515/cclm-2014-0668

    Article  CAS  Google Scholar 

  61. Mazzara F, Patella B, Aiello G et al (2021) Electrochemical detection of uric acid and ascorbic acid using r-GO/NPs based sensors. Electrochim Acta 388:138652. https://doi.org/10.1016/j.electacta.2021.138652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are also grateful to Central Analítica (IQ/USP) for the SEM infrastructure. We also thank Dr. Gabriel N. Meloni for giving scientific inputs and comments.

Funding

This research was supported by São Paulo Research Foundation (FAPESP) (Grant numbers: 2007/08244-5, 2007/54829-5, 2014/50867-3, 2017/13137-5, 2017/18574-4, 2018/14462-0, 2018/08782-1, and 2020/00325-0), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant numbers: 140462/2021-0, 465389/2014-7, 311847-2018-8–INCTBio, 302839/2020-8, and 315838/2021-3), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) (Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thiago R. L. C. Paixão.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 1506 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veloso, W.B., Ataide, V.N., Rocha, D.P. et al. 3D-printed sensor decorated with nanomaterials by CO2 laser ablation and electrochemical treatment for non-enzymatic tyrosine detection. Microchim Acta 190, 63 (2023). https://doi.org/10.1007/s00604-023-05648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05648-8

Keywords

Navigation