Skip to main content
Log in

Construction of efficient electrochemiluminescence resonance energy transfer sensor based on SnO2/SnS2QDs-Ru@IRMOF-3 composite for sensitive detection of procalcitonin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An efficient electrochemiluminescence resonance energy transfer (ECL-RET) method is proposed which combines the luminescent materials of tris(4,4′-dicarboxylicacid-2,2′-bipyridyl) ruthenium(II) (energy donor) and tin dioxide and tin disulfide quantum dots (SnO2/SnS2QDs) (energy acceptor) into the isoreticular metal − organic framework-3 (IRMOF-3) material to form a composite. In this mode, the distance between the energy donor and the acceptor was greatly shortened, reducing the energy loss, and thereby effectively improving RET efficiency and further significantly improving the ECL signal. The obtained composite (SnO2/SnS2QDs-Ru@IRMOF-3) was combined with sandwich immunoreaction to construct an ECL immunosensor for the sensitive detection of procalcitonin (PCT). Under the optimized experimental conditions with a working potential of − 1.48 V (vs Ag/AgCl), the proposed PCT biosensor exhibited a linear concentration range of 1 × 10−4–200 ng mL−1, with a detection limit of 0.029 pg mL−1 (S/N = 3). The biosensor was used to detect PCT in actual samples. The biosensor has broad application prospects in biological analysis and clinical diagnosis due to its high sensitivity, good selectivity, and good stability.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang C, Gao J, Wang Z (2018) Bioresponsive nanoparticles targeted to infectious microenvironments for sepsis management. Adv Mater 30:1803618–1803627

    Article  Google Scholar 

  2. EI Haddad H, Chaftari A-M, Hachem R, Chaftari P, Raad II (2018) Biomarkers of sepsis and bloodstream infections: the role of procalcitonin and proadrenomedullin with emphasis in patients with cancer. Clin Infect Dis 67:971–977

    Article  Google Scholar 

  3. Li H, Sun Y, Elseviers J, Muyldermans S, Liu S, Wan Y (2014) A nanobody-based electrochemiluminescent immunosensor for sensitive detection of human procalcitonin. Analyst 139:3718–3721

    Article  CAS  PubMed  Google Scholar 

  4. Feng J, Li F, Liu L, Liu X, Qian Y, Ren X, Wang X, Wei Q (2020) Ultrasensitive photoelectrochemical immunosensor for procalcitonin detection with porous nanoarray BiVO4/CuxS platform as advanced signal amplification under anodic bias. Sensor Actuat B-Chem 308:127685

    Article  CAS  Google Scholar 

  5. Jia Y, Yang L, Xue J, Ren X, Zhang N, Fan D, Wei Q, Ma H (2019) Highly-branched Cu2O as well-ordered co-reaction accelerator for amplifying electrochemiluminescence response of gold nanoclusters and procalcitonin analysis based on protein bioactivity maintenance. Biosens Bioelectron 144:111676

    Article  CAS  PubMed  Google Scholar 

  6. Xue J, Yang L, Jia Y, Wang H, Zhang N, Ren X, Ma H, Wei Q, Ju H (2019) Electrochemiluminescence double quenching system based on novel emitter GdPO4: Eu with low-excited positive potential for ultrasensitive procalcitonin detection. ACS Sens 4:2825–2831

    Article  CAS  PubMed  Google Scholar 

  7. Shao X, Song X, Liu X, Yan L, Liu L, Fan D, Wei Q, Ju H (2021) A dual signal-amplified electrochemiluminescence immunosensor based on core-shell CeO2-Au@Pt nanosphere for procalcitonin detection. Microchim Acta 188:344

    Article  CAS  Google Scholar 

  8. Vincenzi B, Fioroni I, Pantano F, Angeletti S, Dicuonzo G, Zoccoli A, Santini D, Tonini G (2016) Procalcitonin as diagnostic marker of infection in solid tumors patients with fever. Sci Rep 6:28090–28095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fang Y, Hu Q, Yu X, Wang L (2018) Ultrasensitive electrochemical immunosensor for procalcitonin with signal enhancement based on zinc nanoparticles functionalized ordered mesoporous carbon-silica nanocomposites. Sensor Actuat B-Chem 258:238–245

    Article  CAS  Google Scholar 

  10. Ghrera AS (2019) Quantum dot modified interface for electrochemical immunosensing of procalcitonin for the detection of urinary tract infection. Anal Chim Acta 1056:26–33

    Article  CAS  PubMed  Google Scholar 

  11. Dutta G, Nagarajan S, Lapidus LJ, Lillehoj PB (2017) Enzyme-free electrochemical immunosensor based on methylene blue and the electro-oxidation of hydrazine on Pt nanoparticles. Biosens Bioelectron 92:372–377

    Article  CAS  PubMed  Google Scholar 

  12. Battaglia F, Baldoneschi V, Meucci V, Intorre L, Minunni M, Scarano S (2021) Detection of canine and equine procalcitonin for sepsis diagnosis in veterinary clinic by the development of novel MIP-based SPR biosensors. Talanta 230:122347

    Article  CAS  PubMed  Google Scholar 

  13. Rieger M, Kochleus C, Teschner D, Rascher D, Barton AK, Geerlof A, Kremmer E, Schmid M, Hartmann A, Gehlen H (2014) A new ELISA for the quantification of equine procalcitonin in plasma as potential inflammation biomarker in horses. Anal Bioanal Chem 406:5507–5512

    Article  CAS  PubMed  Google Scholar 

  14. Jing W, Wang Y, Yang Y, Wang Y, Ma G, Wang S, Tao N (2019) Time-resolved digital immunoassay for rapid and sensitive quantitation of procalcitonin with plasmonic imaging. ACS Nano 13:8609–8617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang R, Wang J, Gao Y (2019) Advances of microfluidic technologies applied in diagnosis and treatment of sepsis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 31:789–792

    Google Scholar 

  16. Köszegi T (2002) Immunoluminometric detection of human procalcitonin. J Biochem Biophy Meth 53:157–164

    Article  Google Scholar 

  17. Serebrennikova K, Samsonova J, Osipov A (2018) Hierarchical nanogold labels to improve the sensitivity of lateral flow immunoassay. Nano-Micro Lett 10:24–31

    Article  Google Scholar 

  18. Qin D, Jiang X, Mo G, Zheng X, Deng B (2020) Electrochemiluminescence immunoassay of human chorionic gonadotropin using silver carbon quantum dots and functionalized polymer nanospheres. Microchim Acta 187:482–494

    Article  CAS  Google Scholar 

  19. Zhao L, Song X, Ren X, Wang H, Fan D, Wu D, Wei Q (2021) Ultrasensitive near-infrared electrochemiluminescence biosensor derived from Eu-MOF with antenna effect and high efficiency catalysis of specific CoS2 hollow triple shelled nanoboxes for procalcitonin. Biosens Bioelectron 191:113409–113416

    Article  CAS  PubMed  Google Scholar 

  20. Xing B, Zhu W, Zheng X, Zhu Y, Wei Q, Wu D (2018) Electrochemiluminescence immunosensor based on quenching effect of SiO2@PDA on SnO2/rGO/Au NPs-luminol for insulin detection. Sensor Actuat B-Chem 265:403–411

    Article  CAS  Google Scholar 

  21. Qin D, Jiang X, Mo G, Feng J, Yu C, Deng B (2019) A novel carbon quantum dots signal amplification strategy coupled with sandwich electrochemiluminescence immunosensor for the detection of CA15-3 in human serum. ACS Sens 4:504–512

    Article  CAS  PubMed  Google Scholar 

  22. Cao J, Liu F, Fu X, Ma J, Ren S, Liu Y (2019) A novel electrochemiluminescence resonance energy transfer system for simultaneous determination of two acute myocardial infarction markers using versatile gold nanorods as energy acceptors. Chem Commun 55:2829–2832

    Article  CAS  Google Scholar 

  23. Chen Y, Zhou S, Li L, Zhu J (2017) Nanomaterials-based sensitive electrochemiluminescence biosensing. Nano Today 12:98–115

    Article  CAS  Google Scholar 

  24. Yang L, Fan D, Zhang Y, Ding C, Wu D, Wei Q, Ju H (2019) Ferritin-based electrochemiluminescence nanosurface energy transfer system for procalcitonin detection using HWRGWVC heptapeptide for site-oriented antibody immobilization. Anal Chem 91:7145–7152

    Article  CAS  PubMed  Google Scholar 

  25. Bahari D, Babamiri B, Salimi A, Hallaj R, Amininasab SM (2020) A self-enhanced ECL-RET immunosensor for the detection of CA19-9 antigen based on Ru(bpy)2(phen-NH2)2+-Amine-rich nitrogen-doped carbon nanodots as probe and graphene oxide grafted hyperbranched aromatic polyamide as platform. Anal Chim Acta 1132:55–65

    Article  CAS  PubMed  Google Scholar 

  26. Li P, Ma G, Wu K, Deng A, Li J (2021) An electrochemiluminescence energy resonance transfer system for highly sensitive detection of brombuterol. Talanta 223:121687

    Article  CAS  PubMed  Google Scholar 

  27. Mo G, He X, Qin D, Jiang X, Zheng X, Deng B (2021) A potential-resolved electrochemiluminescence resonance energy transfer strategy for the simultaneous detection of neuron-specific enolase and the cytokeratin 19 fragment. Analyst 146:1334–1339

    Article  CAS  PubMed  Google Scholar 

  28. Wang H, Liao L, Chai Y, Yuan R (2020) Sensitive immunosensor based on high effective resonance energy transfer of lucigenin to the cathodic electrochemiluminescence of tris(bipyridine) Ru(II) complex. Biosens Bioelectron 150:111915–111919

    Article  CAS  PubMed  Google Scholar 

  29. Cao J, Fu X, Zhao L, Ma S, Liu Y (2020) Highly efficient resonance energy transfer in g-C3N4-Ag nanostructure: proof-of-concept toward sensitive split-type electrochemiluminescence immunoassay. Sensor Actuat B-Chem 311:127926–127932

    Article  CAS  Google Scholar 

  30. Makhanya N, Oboirien B, Ren J, Musyoka N, Sciacovelli A (2021) Recent advances on thermal energy storage using metal-organic frameworks (MOFs). J Energy Storage 34:102179–102196

    Article  Google Scholar 

  31. Yang H, Wang B, Cheng J, Wang R, Zhang S, Dong S, Wei S, Wang P, Li J (2019) Determination and removal of clenbuterol with a stable fluorescent zirconium (IV)-based metal organic framework. Microchim Acta 186:454–461

    Article  Google Scholar 

  32. Yadav S, Dixit R, Sharma S, Dutta S, Solanki K, Sharma RK (2021) Magnetic metal–organic framework composites: structurally advanced catalytic materials for organic transformations. Mater Adv 2:2153–2187

    Article  CAS  Google Scholar 

  33. Hu J, Chen Y, Zhang H, Chen Z, Ling Y, Yang Y, Liu X, Jia Y, Zhou Y (2021) TEA-assistant synthesis of MOF-74 nanorods for drug delivery and in-vitro magnetic resonance imaging. Microporous Mesoporous Mater 315:110900–110906

    Article  CAS  Google Scholar 

  34. Mo G, He X, Qin D, Meng S, Wu Y, Deng B (2021) Spatially-resolved dual-potential sandwich electrochemiluminescence immunosensor for the simultaneous determination of carbohydrate antigen 19–9 and carbohydrate antigen 24–2. Biosens Bioelectron 178:113024–113031

    Article  CAS  PubMed  Google Scholar 

  35. Li H, Wang X, Zhang X, He M, Zhang J, Liu P, Tang X, Li C, Wang Y (2022) Eu-MOF nanorods functionalized with large heterocyclic ionic liquid for photoelectrochemical immunoassay of a-fetoprotein. Anal Chim Acta 1195:339459

    Article  CAS  PubMed  Google Scholar 

  36. Luo Y, Zhao X, Gao Z, Wang H, Liu Y, Guo C, Pan Y (2022) Pd nanoparticles decorated thiol-functionalized MOF as an efficient matrix for differentiation and quantitation of oligosaccharide isomers by laser desorption/ionization mass spectrometry. Anal Chim Acta 1202:339665

    Article  CAS  PubMed  Google Scholar 

  37. Yang X, Yu Y, Peng L, Lei Y, Chai Y, Yuan R, Zhuo Y (2018) Strong electrochemiluminescence from MOF accelerator enriched quantum dots for enhanced sensing of Trace cTnI. Anal Chem 90:3995–4002

    Article  CAS  PubMed  Google Scholar 

  38. Zhang H, Luo F, Wang P, Guo L, Qiu B, Lin Z (2019) Signal-on electrochemiluminescence aptasensor for bisphenol A based on hybridization chain reaction and electrically heated electrode. Biosens Bioelectron 129:36–41

    Article  CAS  PubMed  Google Scholar 

  39. Nathiya D, Gurunathan K, Wilson J (2020) Size controllable, pH triggered reduction of bovine serum albumin and its adsorption behavior with SnO2/SnS2 quantum dots for biosensing application. Talanta 210:120671

    Article  CAS  PubMed  Google Scholar 

  40. Wu Y, Qin D, Luo Z, Meng S, Mo G, Jiang X, Deng B (2022) High quantum yield boron and nitrogen codoped carbon quantum dots with red/purple emissions for ratiometric fluorescent IO4 sensing and cell imaging. ACS Sustainable Chem Eng 10:5195–5202

    Article  CAS  Google Scholar 

  41. Han Q, Wang C, Li Z, Wu J, Liu P, Mo F, Fu Y (2020) Multifunctional zinc oxide promotes electrochemiluminescence of porphyrin aggregates for ultrasensitive detection of copper ion. Anal Chem 92:3324–3331

    Article  CAS  PubMed  Google Scholar 

  42. Wang Y, Liu L, Fang G, Wang L, Kengara FO, Zhu C (2018) The mechanism of 2-chlorobiphenyl oxidative degradation by nanoscale zero-valent iron in the presence of dissolved oxygen. Environ Sci Pollut Res 25:2265–2272

    Article  CAS  Google Scholar 

  43. Lei Y, Wen R, Zhou J, Chai Y, Yuan R, Zhuo Y (2018) Silver ions as novel coreaction accelerator for remarkably enhanced electrochemiluminescence in a PTCA-S2O82− system and its application in an ultrasensitive assay for mercury ions. Anal Chem 90:6851–6858

    Article  CAS  PubMed  Google Scholar 

  44. Lei Y, Zhou J, Chai Y, Zhuo Y, Yuan R (2018) SnS2 quantum dots as new emitters with strong electrochemiluminescence for ultrasensitive antibody detection. Anal Chem 90:12270–12277

    Article  CAS  PubMed  Google Scholar 

  45. Singh D, Baruah JB (2012) Metal(II) complexes derived from conformation flexible cyclic imide tethered carboxylic acids: syntheses, supramolecular structures, and molecular properties. Cryst Growth Des 12:2109–2121

    Article  CAS  Google Scholar 

  46. Yang F, Yang F, Tu T, Liao N, Chai Y, Yuan R, Zhuo Y (2021) A synergistic promotion strategy remarkably accelerated electrochemiluminescence of SnO2 QDs for microRNA detection using 3D DNA walker amplification. Biosens Bioelectron 173:112820

    Article  CAS  Google Scholar 

  47. Ye J, Liu G, Yan M, Zhu Q, Zhu L, Huang J, Yang X (2019) Highly luminescent and self-enhanced electrochemiluminescence of Tris(bipyridine) ruthenium(II) nanohybrid and its sensing application for label-free detection of MicroRNA. Anal Chem 91:13237–13243

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (22164004) and the Guangxi Science Foundation of China (2022GXNSFDA035069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biyang Deng.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1838 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, D., Meng, S., Wu, Y. et al. Construction of efficient electrochemiluminescence resonance energy transfer sensor based on SnO2/SnS2QDs-Ru@IRMOF-3 composite for sensitive detection of procalcitonin. Microchim Acta 189, 430 (2022). https://doi.org/10.1007/s00604-022-05519-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05519-8

Keywords

Navigation