Skip to main content
Log in

Smartphone-based electrochemical analysis integrated with NFC system for the voltammetric detection of heavy metals using a screen-printed graphene electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical determination of five heavy metals is demonstrated using a wireless and card-sized potentiostat coupled with a smartphone through near-field communication (NFC) technology. A smartphone application was customized to command the NFC potentiostat, collect real-time signals, process the data, and ultimately display the quantities of the selected elements. The screen-printed graphene electrode (SPGE) was simply fabricated and modified using different nanomaterials for each heavy metal. Using differential pulse voltammetry (DPV) mode on the smartphone, the signal peaks were presented at + 10 mV for As(III), + 350 mV for Cr(VI), 0 mV for Hg(II), − 900 mV for Cd(II), and − 680 mV vs. Ag/AgCl for Pb(II). The linear ranges were 25−500, 250−25,000, 100−1,500, 25−750, 25−750 ng mL−1 with detection limits of 3.0, 40, 16, 2.0, and 0.95 ng mL−1 for As(III), Cr(VI), Hg(II), Cd(II), and Pb(II), respectively. The reproducibility in terms of relative standard deviation was less than 8.8% (n = 5 devices) of the developed SPGE coupled with the NFC potentiostat. Various samples for different applications (e.g., food safety and environmental monitoring) were analyzed and quantified using the proposed sensors. The results from this sensor indicate that there is no significant difference (95% confidence level) compared with those obtained from the traditional ICP–OES method, while the recoveries were found in the acceptable range of 80–111%. Hence, it can be deduced that this recent advanced technology of the NFC potentiostat developed for heavy metal analysis offers a highly sensitive and selective detection, yet the sensor remains compact, low-cost, and readily accessible to end-users.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M (2021) Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12(227):643972. https://doi.org/10.3389/fphar.2021.643972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jin M, Yuan H, Liu B, Peng J, Xu L, Yang D (2020) Review of the distribution and detection methods of heavy metals in the environment. Anal Methods 12(48):5747–5766. https://doi.org/10.1039/D0AY01577F

    Article  CAS  PubMed  Google Scholar 

  3. Ortone V, Matino L, Santoro F, Cinti S (2021) Merging office/filter paper-based tools for pre-concentring and detecting heavy metals in drinking water. Chem Commun 57(58):7100–7103. https://doi.org/10.1039/D1CC02481G

    Article  CAS  Google Scholar 

  4. Kinuthia GK, Ngure V, Beti D, Lugalia R, Wangila A, Kamau L (2020) Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep 10(1):8434. https://doi.org/10.1038/s41598-020-65359-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Suherman AL, Kuss S, Tanner EEL, Young NP, Compton RG (2018) Electrochemical Hg2+ detection at tannic acid-gold nanoparticle modified electrodes by square wave voltammetry. Analyst 143(9):2035–2041. https://doi.org/10.1039/C8AN00508G

    Article  CAS  PubMed  Google Scholar 

  6. Gupta AK, Deva D, Sharma A, Verma N (2010) Fe-grown carbon nanofibers for removal of arsenic(V) in wastewater. Ind Eng Chem Res 49(15):7074–7084. https://doi.org/10.1021/ie100392q

    Article  CAS  Google Scholar 

  7. Bocca B, Forte G, Pino A, Alimonti A (2013) Heavy metals in powder-based cosmetics quantified by ICP-MS: an approach for estimating measurement uncertainty. Anal Methods 5(2):402–408. https://doi.org/10.1039/C2AY25914A

    Article  CAS  Google Scholar 

  8. Gajek R, Barley F, She J (2013) Determination of essential and toxic metals in blood by ICP-MS with calibration in synthetic matrix. Anal Methods 5(9):2193–2202. https://doi.org/10.1039/C3AY26036D

    Article  CAS  Google Scholar 

  9. Ahmad H, Husain FM, Khan RA (2021) Graphene oxide lamellar membrane with enlarged inter-layer spacing for fast preconcentration and determination of trace metal ions. RSC Adv 11(20):11889–11899. https://doi.org/10.1039/D1RA01055G

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Zhong C, Zhang Q, Chen B, He M, Hu B (2015) Graphene oxide–TiO2 composite as a novel adsorbent for the preconcentration of heavy metals and rare earth elements in environmental samples followed by on-line inductively coupled plasma optical emission spectrometry detection. RSC Adv 5(8):5996–6005. https://doi.org/10.1039/C4RA13333A

    Article  CAS  Google Scholar 

  11. Anthemidis AN, Daftsis EI, Kalogiouri NP (2014) A sequential injection lab-at-valve (SI-LAV) platform for hydride generation atomic absorption spectrometry (HG-AAS): on-line determination of inorganic arsenic. Anal Methods 6(8):2745–2750. https://doi.org/10.1039/C3AY42159G

    Article  CAS  Google Scholar 

  12. Placido Torres D, Antunes Vieira M, Schwingel Ribeiro A, Curtius AJ (2005) Determination of inorganic and total mercury in biological samples treated with tetramethylammonium hydroxide by cold vapor atomic absorption spectrometry using different temperatures in the quartz cell. J Anal At Spectrom 20(4):289–294. https://doi.org/10.1039/B416167J

    Article  CAS  Google Scholar 

  13. Liao J, Chang F, Han X, Ge C, Lin S (2020) Wireless water quality monitoring and spatial mapping with disposable whole-copper electrochemical sensors and a smartphone. Sens Actuators B Chem 306:127557. https://doi.org/10.1016/j.snb.2019.127557

    Article  CAS  Google Scholar 

  14. Emmanuel N, Haridas R, Chelakkara S, Nair RB, Gopi A, Sajitha M, Yoosaf K (2020) Smartphone assisted colourimetric detection and quantification of Pb<sup>2+</sup> and Hg<sup>2+</sup> ions using ag nanoparticles from aqueous medium. IEEE Sens J 20(15):8512–8519. https://doi.org/10.1109/JSEN.2020.2984580

    Article  CAS  Google Scholar 

  15. Ye Y, Wu T, Jiang X, Cao J, Ling X, Mei Q, Chen H, Han D, Xu J-J, Shen Y (2020) Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Appl Mater Interfaces 12(12):14552–14562. https://doi.org/10.1021/acsami.9b23167

    Article  CAS  PubMed  Google Scholar 

  16. Xu Z, Liu Z, Xiao M, Jiang L, Yi C (2020) A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chem Eng J 394:124966. https://doi.org/10.1016/j.cej.2020.124966

    Article  CAS  Google Scholar 

  17. Chałupniak A, Merkoçi A (2017) Graphene oxide–poly(dimethylsiloxane)-based lab-on-a-chip platform for heavy-metals preconcentration and electrochemical detection. ACS Appl Mater Interfaces 9(51):44766–44775. https://doi.org/10.1021/acsami.7b12368

    Article  CAS  PubMed  Google Scholar 

  18. Kumar R, Bhuvana T, Sharma A (2017) Nickel tungstate–graphene nanocomposite for simultaneous electrochemical detection of heavy metal ions with application to complex aqueous media. RSC Adv 7(67):42146–42158. https://doi.org/10.1039/C7RA08047F

    Article  CAS  Google Scholar 

  19. Foster CW, de Souza AP, Metters JP, Bertotti M, Banks CE (2015) Metallic modified (bismuth, antimony, tin and combinations thereof) film carbon electrodes. Analyst 140(22):7598–7612. https://doi.org/10.1039/C5AN01692D

    Article  CAS  PubMed  Google Scholar 

  20. Ferreira R, Chaar J, Baldan M, Braga N (2021) Simultaneous voltammetric detection of Fe3+, Cu2+, Zn2+, Pb2+ e Cd2+ in fuel ethanol using anodic stripping voltammetry and boron-doped diamond electrodes. Fuel 291:120104. https://doi.org/10.1016/j.fuel.2020.120104

    Article  CAS  Google Scholar 

  21. Pei J, Yu X, Zhang Z, Zhang J, Wei S, Boukherroub R (2020) In-situ graphene modified self-supported boron-doped diamond electrode for Pb(II) electrochemical detection in seawater. Appl Surf Sci 527:146761. https://doi.org/10.1016/j.apsusc.2020.146761

    Article  CAS  Google Scholar 

  22. Bhanjana G, Dilbaghi N, Chaudhary S, Kim K-H, Kumar S (2016) Robust and direct electrochemical sensing of arsenic using zirconia nanocubes. Analyst 141(13):4211–4218. https://doi.org/10.1039/C5AN02663F

    Article  CAS  PubMed  Google Scholar 

  23. Wang W, Bai H, Li H, Lv Q, Wang Z, Zhang Q (2017) Disposable plastic electrode for electrochemical determination of total chromium and hexavalent chromium. J Electroanal Chem 794:148–155. https://doi.org/10.1016/j.jelechem.2017.04.016

    Article  CAS  Google Scholar 

  24. Wang X, Liu G, Qi Y, Yuan Y, Gao J, Luo X, Yang T (2019) Embedded Au nanoparticles-based ratiometric electrochemical sensing strategy for sensitive and reliable detection of copper ions. Anal Chem 91(18):12006–12013. https://doi.org/10.1021/acs.analchem.9b02945

    Article  CAS  PubMed  Google Scholar 

  25. Ngoc Bui M-P, Li CA, Han KN, Pham X-H, Seong GH (2012) Simultaneous detection of ultratrace lead and copper with gold nanoparticles patterned on carbon nanotube thin film. Analyst 137(8):1888–1894. https://doi.org/10.1039/C2AN16020J

    Article  CAS  Google Scholar 

  26. Lu Z, Zhang J, Dai W, Lin X, Ye J, Ye J (2017) A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim Acta 184(12):4731–4740. https://doi.org/10.1007/s00604-017-2521-8

    Article  CAS  Google Scholar 

  27. Palisoc S, Gonzales AJ, Pardilla A, Racines L, Natividad M (2019) Electrochemical detection of lead and cadmium in UHT-processed milk using bismuth nanoparticles/Nafion®-modified pencil graphite electrode. Sens Bio-Sens Res 23:100268. https://doi.org/10.1016/j.sbsr.2019.100268

    Article  Google Scholar 

  28. Niu P, Fernández-Sánchez C, Gich M, Ayora C, Roig A (2015) Electroanalytical assessment of heavy metals in waters with bismuth nanoparticle-porous carbon paste electrodes. Electrochim Acta 165:155–161. https://doi.org/10.1016/j.electacta.2015.03.001

    Article  CAS  Google Scholar 

  29. Oularbi L, Turmine M, Salih FE, El Rhazi M (2020) Ionic liquid/carbon nanofibers/bismuth particles novel hybrid nanocomposite for voltammetric sensing of heavy metals. J Environ Chem Eng 8(3):103774. https://doi.org/10.1016/j.jece.2020.103774

    Article  CAS  Google Scholar 

  30. Li D, Wang C, Zhang H, Sun Y, Duan Q, Ji J, Zhang W, Sang S (2017) A highly effective copper nanoparticle coupled with RGO for electrochemical detection of heavy metal ions. Int J Electrochem Sci 12:10933–10945

    Article  CAS  Google Scholar 

  31. El Attar A, Oularbi L, Chemchoub S, El Rhazi M (2021) Effect of electrochemical activation on the performance and stability of hybrid (PPy/Cu2O nanodendrites) for efficient ethanol oxidation in alkaline medium. J Electroanal Chem 885:115042. https://doi.org/10.1016/j.jelechem.2021.115042

    Article  CAS  Google Scholar 

  32. Ferreira NS, Oliveira LHB, Agrelli V, de Oliveira AF, Nogueira ARA, Oliveira A, Gonzalez MH (2019) Bioaccumulation and acute toxicity of As(III) and As(V) in Nile tilapia (Oreochromis niloticus). Chemosphere 217:349–354. https://doi.org/10.1016/j.chemosphere.2018.11.013

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Huang Z, Xie Q, Sun L, Gu T, Li Z, Bu L, Yao S, Tu X, Luo X, Luo S (2013) Electrodeposition of electroreduced graphene oxide-Au nanoparticles composite film at glassy carbon electrode for anodic stripping voltammetric analysis of trace arsenic(III). Sens Actuators B Chem 188:894–901. https://doi.org/10.1016/j.snb.2013.07.113

    Article  CAS  Google Scholar 

  34. Idris AO, Mafa JP, Mabuba N, Arotiba OA (2016) Dealing with interference challenge in the electrochemical detection of As(III) —a complexometric masking approach. Electrochem Commun 64:18–20. https://doi.org/10.1016/j.elecom.2016.01.003

    Article  CAS  Google Scholar 

  35. Pungjunun K, Chaiyo S, Jantrahong I, Nantaphol S, Siangproh W, Chailapakul O (2018) Anodic stripping voltammetric determination of total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim Acta 185(7):324. https://doi.org/10.1007/s00604-018-2821-7

    Article  CAS  Google Scholar 

  36. Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054

    Article  CAS  PubMed  Google Scholar 

  37. O’Connor D, Hou D, Ok YS, Mulder J, Duan L, Wu Q, Wang S, Tack FMG, Rinklebe J (2019) Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review. Environ Int 126:747–761. https://doi.org/10.1016/j.envint.2019.03.019

    Article  CAS  PubMed  Google Scholar 

  38. Chaiyo S, Chailapakul O, Siangproh W (2014) Highly sensitive determination of mercury using copper enhancer by diamond electrode coupled with sequential injection–anodic stripping voltammetry. Anal Chim Acta 852:55–62. https://doi.org/10.1016/j.aca.2014.09.011

    Article  CAS  PubMed  Google Scholar 

  39. Finšgar M, Petovar B, Vodopivec K (2019) Bismuth-tin-film electrodes for Zn(II), Cd(II), and Pb(II) trace analysis. Microchem J 145:676–685. https://doi.org/10.1016/j.microc.2018.11.036

    Article  CAS  Google Scholar 

  40. Zhu L, Xu L, Huang B, Jia N, Tan L, Yao S (2014) Simultaneous determination of Cd(II) and Pb(II) using square wave anodic stripping voltammetry at a gold nanoparticle-graphene-cysteine composite modified bismuth film electrode. Electrochim Acta 115:471–477. https://doi.org/10.1016/j.electacta.2013.10.209

    Article  CAS  Google Scholar 

Download references

Funding

We would like to thank the support from the Postdoctoral Fellowship, Ratchadapisek Somphot Fund, Chulalongkorn University, and National Research Council of Thailand (NRCT): N41A640073. This Research is funded by Thailand Science research and Innovation Fund Chulalongkorn University (CU_FRB65_food(3)_111_23_41).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orawon Chailapakul.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1978 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pungjunun, K., Yakoh, A., Chaiyo, S. et al. Smartphone-based electrochemical analysis integrated with NFC system for the voltammetric detection of heavy metals using a screen-printed graphene electrode. Microchim Acta 189, 191 (2022). https://doi.org/10.1007/s00604-022-05281-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05281-x

Keywords

Navigation