Skip to main content

Advertisement

Log in

3D-printed electrochemical pestle and mortar for identification of falsified pharmaceutical tablets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Falsified medicines and healthcare supplements provide a major risk to public health and thus early identification is critical. Although a host of analytical approaches have been used to date, they are limited, as they require extensive sample preparation, are semi-quantitative and/or are inaccessible to low- and middle-income countries. Therefore, for the first time, we report a simple total analysis system which can rapidly and accurately detect falsified medicines and healthcare supplements. We fabricated a poly-lactic acid (PLA) pestle and mortar and using a commercial 3D printer, then made carbon black/PLA (CB/PLA) electrodes in the base of the mortar using a 3D printing pen to make an electrochemical cell. The pestle and mortar were able to crush and grind the tablets into a fine powder to the same consistency as a standard laboratory pestle and mortar. Using melatonin tablets to characterise the device, the 3D-printed pestle and mortar was able to detect the concentration of melatonin in the presence of insoluble excipients. The calibration plot showed a linear response from 37.5 to 300 µg/mL, where the limit of detection was 7 µg/mL. Electrochemical treatment was able to regenerate the CB/PLA working electrode allowing for repeated use of the device. In a blinded study, the device was able to accurately determine falsified melatonin tablets with recovery percentages between 101% and 105%. This was comparable to HPLC measurements. Overall, these findings highlight that our 3D-printed electrochemical pestle and mortar is an accessible and effective total analysis system that can have the ability to identify falsified medicines and healthcare supplements in remote locations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ozawa S et al (2018) Prevalence and estimated economic burden of substandard and falsified medicines in low-and middle-income countries: a systematic review and meta-analysis. JAMA Netw Open 1(4):e181662

    Article  PubMed  PubMed Central  Google Scholar 

  2. Khurelbat D et al (2020) A cross-sectional analysis of falsified, counterfeit and substandard medicines in a low-middle income country. BMC Public Health 20:1–9

    Article  Google Scholar 

  3. Organization WH (2017) A study on the public health and socioeconomic impact of substandard and falsified medical products

    Google Scholar 

  4. Almuzaini T, Sammons H, Choonara I (2013) Substandard and falsified medicines in the UK: a retrospective review of drug alerts (2001–2011). BMJ open 3(7):e002924

    Article  PubMed  PubMed Central  Google Scholar 

  5. Caudron JM et al (2008) Substandard medicines in resource-poor settings: a problem that can no longer be ignored. Tropical Med Int Health 13(8):1062–1072

    Article  Google Scholar 

  6. Giralt AN et al (2017) Quality assurance of medicines supplied to low-income and middle-income countries: poor products in shiny boxes? BMJ Global Health. 2(2):e000172

    Article  Google Scholar 

  7. Gøtzsche PC, Smith R, Rennie D (2019) Deadly medicines and organised crime: how big pharma has corrupted healthcare. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Edwards C, Jeffray C (2016) On Tap: Organised Crime and the Illicit Trade in Tobacco, Alcohol and Pharmaceuticals. Mischief, Morality and Mobs. Routledge, Oxfordshire, pp 165–188

    Google Scholar 

  9. Jackson G, Patel S, Khan S (2012) Assessing the problem of counterfeit medications in the United Kingdom. Int J Clin Pract 66(3):241–250

    Article  CAS  PubMed  Google Scholar 

  10. Desai K, Chewning B, Mott D (2015) Health care use amongst online buyers of medications and vitamins. Res Social Adm Pharm 11(6):844–858

    Article  PubMed  Google Scholar 

  11. Rebiere H et al (2017) Fighting falsified medicines: the analytical approach. J Pharm Biomed Anal 142:286–306

    Article  CAS  PubMed  Google Scholar 

  12. Bakker IM, Ohana D, Venhuis BJ (2021) Current challenges in the detection and analysis of falsified medicines. J Pharmaceut Biomed Anal 197:113948

    Article  Google Scholar 

  13. Bernard M et al (2015) Liquid chromatography with tandem mass spectrometry for the simultaneous identification and quantification of cardiovascular drugs applied to the detection of substandard and falsified drugs. J Sep Sci 38(4):562–570

    Article  CAS  PubMed  Google Scholar 

  14. Martino R et al (2010) Counterfeit drugs: analytical techniques for their identification. Anal Bioanal Chem 398(1):77–92

    Article  CAS  PubMed  Google Scholar 

  15. Yang Y et al (2010) Rapid resolution RP-HPLC-DAD method for simultaneous determination of sildenafil, vardenafil, and tadalafil in pharmaceutical preparations and counterfeit drugs. Anal Lett 43(3):373–380

    Article  CAS  Google Scholar 

  16. Kovacs S et al (2014) Technologies for detecting falsified and substandard drugs in low and middle-income countries. PloS one 9(3):e90601

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yu H et al (2016) Smartphone-based thin layer chromatography for the discrimination of falsified medicines. 2016 IEEE SENSORS. IEEE, Manhattan

    Google Scholar 

  18. Green MD et al (2015) Integration of novel low-cost colorimetric, laser photometric, and visual fluorescent techniques for rapid identification of falsified medicines in resource-poor areas: application to Artemether-Lumefantrine. Am J Trop Med Hyg 92(Suppl 6):8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sherma J, Rabel F (2019) Advances in the thin layer chromatographic analysis of counterfeit pharmaceutical products: 2008–2019. J Liq Chromatogr Relat Technol 42(11–12):367–379

    Article  CAS  Google Scholar 

  20. Assemat G et al (2019) Benchtop low-field 1H Nuclear Magnetic Resonance for detecting falsified medicines. Talanta 196:163–173

    Article  CAS  PubMed  Google Scholar 

  21. Rebiere H et al (2018) Raman chemical imaging for spectroscopic screening and direct quantification of falsified drugs. J Pharm Biomed Anal 148:316–323

    Article  CAS  PubMed  Google Scholar 

  22. Sacré P-Y et al (2010) Comparison and combination of spectroscopic techniques for the detection of counterfeit medicines. J Pharm Biomed Anal 53(3):445–453

    Article  PubMed  Google Scholar 

  23. Ciza P et al (2019) Comparing the qualitative performances of handheld NIR and Raman spectrophotometers for the detection of falsified pharmaceutical products. Talanta 202:469–478

    Article  CAS  PubMed  Google Scholar 

  24. O’Neil GD (2020) Toward single-step production of functional electrochemical devices using 3D printing: Progress, challenges, and opportunities. Curr Opin Electrochem 20:60–65

    Article  CAS  Google Scholar 

  25. Pumera M (2019) Three-dimensionally printed electrochemical systems for biomedical analytical applications. Curr Opin Electrochem 14:133–137

    Article  CAS  Google Scholar 

  26. Waheed S et al (2016) 3D printed microfluidic devices: enablers and barriers. Lab Chip 16(11):1993–2013

    Article  CAS  PubMed  Google Scholar 

  27. Abdalla A, Patel BA (2021) 3D Printed Electrochemical Sensors. Ann Rev Anal Chem 14:47–63

    Article  CAS  Google Scholar 

  28. Cardoso RM et al (2018) 3D printing for electroanalysis: From multiuse electrochemical cells to sensors. Anal Chim Acta 1033:49–57

    Article  CAS  PubMed  Google Scholar 

  29. Gross B, Lockwood SY, Spence DM (2017) Recent Advances in Analytical Chemistry by 3D Printing. Anal Chem 89(1):57–70

    Article  CAS  PubMed  Google Scholar 

  30. Katseli V, Economou A, Kokkinos C (2019) Single-step fabrication of an integrated 3D-printed device for electrochemical sensing applications. Electrochem Commun 103:100–103

    Article  CAS  Google Scholar 

  31. Katseli V, Economou A, Kokkinos C (2020) A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta 208:120388

    Article  CAS  PubMed  Google Scholar 

  32. Ferreira PA et al (2021) Multi sensor compatible 3D-printed electrochemical cell for voltammetric drug screening. Anal Chim Acta 1169:338568

    Article  CAS  PubMed  Google Scholar 

  33. Culzoni MJ et al (2014) Ambient mass spectrometry technologies for the detection of falsified drugs. MedChemComm 5(1):9–19

    Article  CAS  Google Scholar 

  34. Coopman V, Cordonnier J (2012) Counterfeit drugs and pharmaceutical preparations seized from the black market among bodybuilders. Annales de Toxicologie Analytique. EDP Sciences, France

    Google Scholar 

  35. Dégardin K, Guillemain A, Roggo Y (2017) Comprehensive study of a handheld Raman spectrometer for the analysis of counterfeits of solid-dosage form medicines. J Spectrosc 2017:1–13

    Article  Google Scholar 

  36. Richter EM et al (2019) Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. Anal Chem 91(20):12844–12851

    Article  CAS  PubMed  Google Scholar 

  37. Rocha DP et al (2020) Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim Acta 335:135688

    Article  CAS  Google Scholar 

  38. Ball AT, Patel BA (2012) Rapid voltammetric monitoring of melatonin in the presence of tablet excipients. Electrochim Acta 83:196–201

    Article  CAS  Google Scholar 

  39. Tunna IJ, Patel BA (2013) Analysis of 5-hydroxytryptophan in the presence of excipients from dietary capsules: comparison between cyclic voltammetry and UV visible spectroscopy. Anal Meth 5(10):2523–2528

    Article  CAS  Google Scholar 

  40. Shergill R, Kristova P, Patel BA (2021) Detection of falsified clopidogrel in the presence of excipients using voltammetry. Anal Meth 13:5335–5342

    Article  CAS  Google Scholar 

  41. Levent A (2012) Electrochemical determination of melatonin hormone using a boron-doped diamond electrode. Diam Relat Mater 21:114–119

    Article  CAS  Google Scholar 

  42. Radi A, Bekhiet GE (1998) Voltammetry of melatonin at carbon electrodes and determination in capsules. Bioelectrochem Bioenerg 45(2):275–279

    Article  CAS  Google Scholar 

  43. Bae M, Kim H (2020) The role of vitamin C, vitamin D, and selenium in immune system against COVID-19. Molecules 25(22):5346

    Article  CAS  PubMed Central  Google Scholar 

  44. Abobaker A, Alzwi A, Alraied AHA (2020) Overview of the possible role of vitamin C in management of COVID-19. Pharmacol Rep 72:1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wubshet Tesfaye SA et al (2020) How do we combat bogus medicines in the age of the COVID-19 pandemic? Am J Trop Med Hyg 103(4):1360

    Article  PubMed  PubMed Central  Google Scholar 

  46. Graham N (2010) Faking it: the trade in counterfeit drugs. British Medical Journal Publishing Group, United Kingdom

    Google Scholar 

  47. Świeczkowski D et al (2020) The plague of unexpected drug recalls and the pandemic of falsified medications in cardiovascular medicine as a threat to patient safety and global public health: A brief review. Cardiol J. https://doi.org/10.5603/CJ.a2020.0168

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavik A. Patel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28 KB)

Supplementary file2 (MP4 47508 KB)

Supplementary file3 (MP4 40452 KB)

Supplementary file4 (MP4 53522 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shergill, R.S., Farlow, A., Perez, F. et al. 3D-printed electrochemical pestle and mortar for identification of falsified pharmaceutical tablets. Microchim Acta 189, 100 (2022). https://doi.org/10.1007/s00604-022-05202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05202-y

Keywords

Navigation