Skip to main content
Log in

A novel ratiometric fluorescence nanoprobe for sensitive determination of uric acid based on CD@ZIF-CuNC nanocomposites

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel ratiometric fluorescence nanoprobe based on carbon dots (CDs) and Cu nanoclusters (CuNCs) was designed for the label-free determination of uric acid (UA). The metal-organic framework (MOF) encapsulated CuNCs (ZIF-CuNC), and nitrogen-doped CDs can self-assemble into well-defined spherical nanocomposites (CD@ZIF-CuNC) due to physical adsorption. Under the excitation wavelength of 360 nm, the CD@ZIF-CuNC nanocomposites exhibit two evident intrinsic emissions peaked at 460 nm (CDs) and 620 nm (ZIF-CuNC), respectively. In the presence of H2O2, the fluorescence of CD@ZIF-CuNC at 620 nm is quenched remarkably within 1 min, while little effect on the emission at 460 nm is observed. Therefore, taking the fluorescence at 620 nm as the report signal and 460 nm as the reference signal, ratiometric quantitative determination of H2O2 was achieved with a linear range of 1–100 μM and a detection limit of 0.30 μM. The CD@ZIF-CuNC nanoprobe was successfully applied to the determination of UA that is catalyzed by uricase to produce H2O2, obtaining the linear range of 1–30 μM and the detection limit of 0.33 μM. Eventually, this strategy has been successfully applied to the determination of UA in human urine samples.

Graphical abstract

A novel and convenient CDs@ZIF-CuNCs-based nanoplatform was constructed for sensitive ratiometric fluorescence determination of UA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ren XL, Yang LQ, Tang FQ, Yan CM, Ren J (2010) Enzyme biosensor based on NAD-sensitive quantum dots. Biosens Bioelectron 26(1):271–274

    Article  CAS  Google Scholar 

  2. Fang AJ, Wu QQ, Lu QJ, Chen HY, Li HT, Liu ML, Zhang YY, Yao SZ (2016) Upconversion ratiometric fluorescence and colorimetric dual-readout assay for uric acid. Biosens Bioelectron 86:664–670

    Article  CAS  Google Scholar 

  3. Misra N, Kumar V, Borde L, Varshney L (2013) Localized surface plasmon resonance-optical sensors based on radiolytically synthesized silver nanoparticles for estimation of uric acid. Sensors Actuators B Chem 178:371–378

    Article  CAS  Google Scholar 

  4. Boroumand S, Chamjangali MA, Bagherian G (2017) Double injection/single detection asymmetric flow injection manifold for spectrophotometric determination of ascorbic acid and uric acid: selection the optimal conditions by MCDM approach based on different criteria weighting methods. Spectroc Acta Pt A-Molec Biomolec Spectr 174:203–213

    Article  CAS  Google Scholar 

  5. Li XL, Li G, Jiang YZ, Kang DZ, Jin CH, Shi Q, Jin TF, Inoue K, Todoroki K, Toyo'oka T, Min JZ (2015) Human nails metabolite analysis: a rapid and simple method for quantification of uric acid in human fingernail by high-performance liquid chromatography with UV-detection. J Chromatogr B 1002:394–398

    Article  CAS  Google Scholar 

  6. Liu LL, Liu L, Wang YL, Ye BC (2019) A novel electrochemical sensor based on bimetallic metal organic framework-derived porous carbon for detection of uric acid. Talanta 199:478–484

    Article  CAS  Google Scholar 

  7. Alula MT, Lemmens BL, Wulferding D, Yang J, Spende H (2019) Preparation of silver nanoparticles coated ZnO/Fe3O4 composites using chemical reduction method for sensitive detection of uric acid via surface-enhanced Raman spectroscopy. Anal Chim Acta 1073:62–71

    Article  CAS  Google Scholar 

  8. Saqib M, Qi LM, Hui P, Nsabimana A, Halawa MI, Zhang W, Xu GB (2018) Development of luminol-N-hydroxyphthalimide chemiluminescence system for highly selective and sensitive detection of superoxide dismutase, uric acid and Co2+. Biosens Bioelectron 99:519–524

    Article  CAS  Google Scholar 

  9. Wang XY, Zhu GB, Cao WD, Liu ZJ, Pan CG, Hu WJ, Zhao WY, Sun JF (2019) A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta 191:46–53

    Article  CAS  Google Scholar 

  10. Kong RM, Yang AJ, Wang Q, Wang YJ, Ma L, Qu FL (2018) Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Microchim Acta 185(1):63

    Article  Google Scholar 

  11. Chen C, Zhao J, Lu Y, Sun J, Yang X (2018) Fluorescence immunoassay based on the phosphate-triggered fluorescence turn-on detection of alkaline phosphatase. Anal Chem 90(5):3505–3511

    Article  CAS  Google Scholar 

  12. Liu YY, Li HC, Guo B, Wei LJ, Chen B, Zhang YY (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740

    Article  CAS  Google Scholar 

  13. Jin D, Seo MH, Huy BT, Pham QT, Conte M, Thangadurai D, Lee YI (2016) Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens Bioelectron 77:359–365

    Article  CAS  Google Scholar 

  14. Xue FF, Qu F, Han WL, Xia L, You JM (2019) Aggregation-induced emission enhancement of gold nanoclusters triggered by silicon nanoparticles for ratiometric detection of protamine and trypsin. Anal Chim Acta 1046:170–178

    Article  CAS  Google Scholar 

  15. Han X, Meng Z, Xia L, Qu FL, Kong RM (2020) O-Phenylenediamine/gold nanocluster-based nanoplatform for ratiometric fluorescence detection of alkaline phosphatase activity. Talanta 212:120768

    Article  CAS  Google Scholar 

  16. Gui RJ, Jin H, Bu XN, Fu YX, Wang ZH, Liu QY (2019) Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coord Chem Rev 383:82–103

    Article  CAS  Google Scholar 

  17. Han X, Han M, Ma L, Qu F, Kong RM, Qu FL (2019) Self-assembled gold nanoclusters for fluorescence turn-on and colorimetric dual-readout detection of alkaline phosphatase activity via DCIP-mediated fluorescence resonance energy transfer. Talanta 194:55–62

    Article  CAS  Google Scholar 

  18. Chen C, Zhao D, Jiang Y, Ni P, Zhang C, Wang B, Yang F, Lu Y, Sun J (2019) Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal Chem 91(23):15017–15024

    Article  CAS  Google Scholar 

  19. Hu X, Liu XD, Zhang XD, Chai HX, Huang YM (2018) One-pot synthesis of the CuNCs/ZIF-8 nanocomposites for sensitively detecting H2O2 and screening of oxidase activity. Biosens Bioelectron 105:65–70

    Article  CAS  Google Scholar 

  20. Huang H, Li H, Feng JJ, Feng H, Wang AJ, Qian Z (2017) One-pot green synthesis of highly fluorescent glutathione-stabilized copper nanoclusters for Fe3+ sensing. Sensors Actuators B Chem 241:292–297

    Article  CAS  Google Scholar 

  21. Wang ZG, Chen R, Xiong Y, Cepe K, Schneider J, Zboril R, Lee CS, Rogach AL (2017) Incorporating copper nanoclusters into metal-organic frameworks: confinement-assisted emission enhancement and application for trinitrotoluene detection. Part Part Syst Charact 34(6):1700029

    Article  Google Scholar 

  22. Zhou ZH, Zhao J, Di ZH, Liu B, Li ZH, Wu XM, Li LL (2020) Core-shell gold nanorod@mesoporous-MOF heterostructures for combinational phototherapy. Nanoscale 13(1):131–137

    Article  Google Scholar 

  23. Kong WH, Wu D, Li GL, Chen XF, Gong PW, Sun ZW, Chen G, Xia L, You JM, Wu YN (2017) A facile carbon dots based fluorescent probe for ultrasensitive detection of ascorbic acid in biological fluids via non-oxidation reduction strategy. Talanta 165:677–684

    Article  CAS  Google Scholar 

  24. Zhao YM, Geng X, Shi XX, Guo YF, Sun YQ, Qu LB, Li ZH (2021) A fluorescence-switchable carbon dot for reversible turn-on sensing of molecular oxygen. J Mater Chem C 9(12):4300–4306

    Article  CAS  Google Scholar 

  25. Feng DW, Chung WC, Wei ZW, Gu ZY, Jiang HL, Chen YP, Darensbourg DJ, Zhou HC (2013) Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J Am Chem Soc 135(45):17105–17110

    Article  CAS  Google Scholar 

  26. Zhao MZ, Feng H, Han JN, Ao H, Qian ZS (2017) Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch. Anal Chim Acta 984:202–210

    Article  CAS  Google Scholar 

  27. Kulkarnia S, Pandeya A, Nikama AN, Nannurib SH, Georgeb SD, Fayazc SMA, Vincentd AP, Mutalik S (2021) ZIF-8 nano confined protein-titanocene complex core-shell MOFs for efficient therapy of neuroblastoma: optimization, molecular dynamics and toxicity studies. Int J Biol Macromol 178:444–463

    Article  Google Scholar 

  28. Hu LZ, Yuan YL, Zhang L, Zhao JM, Majeed S, Xu GB (2013) Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal Chim Acta 762:83–86

    Article  CAS  Google Scholar 

  29. Azmi NE, Ramli NI, Abdullah J, Hamid MAA, Sidek H, Rahman SA, Ariffin N, Yusof NA (2015) A simple and sensitive fluorescence based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Biosens Bioelectron 67:129–133

    Article  CAS  Google Scholar 

  30. Meng FF, Yin HQ, Li Y, Zheng SY, Gan F, Ye G (2018) One-step synthesis of enzyme-stabilized gold nanoclusters for fluorescent ratiometric detection of hydrogen peroxide, glucose and uric acid. Microchem J 141:431–437

    Article  CAS  Google Scholar 

  31. Cai Y, Zhu HS, Zhou WC, Qiu ZY, Chen CC, Aori QL, Li KS, Liu YJ (2021) Capsulation of AuNCs with AIE effect into metal−organic framework for the marriage of a fluorescence and colorimetric biosensor to detect organophosphorus pesticides. Anal Chem 93(19):7275–7282

    Article  CAS  Google Scholar 

  32. Ke CY, Wu YT, Tseng WL (2015) Fluorescein-5-isothiocyanate-conjugated protein-directed synthesis of gold nanoclusters for fluorescent ratio metric sensing of an enzyme-substrate system. Biosens Bioelectron 69:46–53

    Article  CAS  Google Scholar 

  33. Amjadi M, Hallaj T, Kouhi Z (2018) An enzyme-free fluorescent probe based on carbon dots-MnO2, nanosheets for determination of uric acid. J Photochem Photobiol A-Chem 356:603–609

    Article  CAS  Google Scholar 

  34. Wang X, Tang CL, Liu JJ, Zhang HZ, Wang J (2018) Ultra-small CuS nanoparticles as peroxidase mimetics for sensitive and colorimetric detection of uric acid in human serum. Chin J Anal Chem 46(5):e1825–e1831

    Article  Google Scholar 

  35. Cinková K, Kianičková K, Stanković DM, Vojs M, Marton M, Švorc Ľ (2018) The doping level of boron-doped diamond electrodes affects the voltammetric sensing of uric acid. Anal Methods 10(9):991–996

    Article  Google Scholar 

  36. Lv JJ, Li CW, Feng SS, Chen SM, Ding Y, Chen CL, Hao QL, Yang TH, Lei W (2019) A novel electrochemical sensor for uric acid detection based on PCN/MWCNT. Ionics 25(9):4437–4445

  37. Chen YJ, Ji P, Ma GY, Song ZH, Tang BQ, Li TJ (2021) Simultaneous determination of cellular adenosine nucleotides, malondialdehyde, and uric acid using HPLC. Biomed Chromatogr e5156

  38. Wang AL, Guan C, Shan GY, Chen YW, Wang CL, Liu YC (2019) A nanocomposite prepared from silver nanoparticles and carbon dots with peroxidase mimicking activity for colorimetric and SERS-based determination of uric acid. Microchim Acta 186(9):644

  39. Liu MW, He Y, Zhou J, Ge YL, Zhou JG, Song GW (2020) A “naked-eye” colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta 1103:134–142

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2020KB020), the National Natural Science Foundation of China (21775089, 22074080), the Open Project of Chemistry Department of Qingdao University of Science and Technology (QUSTHX201926), and the Graduate Education Innovation Program of Qufu Normal University (CXJ1903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Mei Kong or Zhi-Ling Song.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 8294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Li, P., Xia, L. et al. A novel ratiometric fluorescence nanoprobe for sensitive determination of uric acid based on CD@ZIF-CuNC nanocomposites. Microchim Acta 188, 259 (2021). https://doi.org/10.1007/s00604-021-04914-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04914-x

Keywords

Navigation