Skip to main content
Log in

Magnetic metal-organic framework MIL-100 (Fe)/polyethyleneimine composite as an adsorbent for the magnetic solid-phase extraction of fungicides and their determination using HPLC-UV

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Fe3O4@MIL-100 (Fe)/PEI are used for the first time as an adsorbent material for the extraction of pesticide residues (epoxiconazole, flusilazole, tebuconazole, and triadimefon) from food matrices. The adsorbent proposed (Fe3O4@MIL-100(Fe)/PEI) was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), thermogravimetric (TG) analysis, and vibrating sample magnetometer (VSM) techniques to evaluate the properties of the sorbent. Then, the Fe3O4@MIL-100 (Fe)/PEI was employed for the quantification of the four triazole fungicides in fruits and vegetables (apple, orange, tomato, cabbage, and cucumber) using HPLC-UV for separation and detection. During the extraction process, the main parameters such as amount of adsorbent, extraction time, pH value, ionic strength, eluting solvent, and eluting volume were optimized. Under the optimum conditions, good linearity of this method was observed for all analytes, with correlation coefficients (R2) ≥ 0.9908. The limits of detection (LODs) ranged from 0.021–3.04 μg kg−1. The extraction recoveries of the four triazole fungicides varied from 73.9 to 109.4% with relative standard deviations (RSD) in the range 0.5 to 6.2%. Compared with other MOFs, the modification of Fe3O4@MIL-100 (Fe) with PEI shows high efficient adsorption due to the combined benefits of MIL-100 (Fe) and PEI. The material is easily synthesized, has good stability, and is of low cost. 

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bidari A, Ganjali MR, Norouzi P, Hosseini MRM, Assadi Y (2011) Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid–liquid microextraction. Food Chem 126:1840–1844. https://doi.org/10.1016/J.FOODCHEM.2010.11.142

    Article  CAS  PubMed  Google Scholar 

  2. Li N, Jiang H-L, Wang X, Wang X, Xu G, Zhang B, Wang L, Zhao RS, Lin JM (2018) Recent advances in graphene-based magnetic composites for magnetic solid-phase extraction. TrAC Trends Anal Chem 102:60–74. https://doi.org/10.1016/j.trac.2018.01.009

    Article  CAS  Google Scholar 

  3. Yu M, Wang L, Hu L, Li Y, Luo D, Mei S (2019) Recent applications of magnetic composites as extraction adsorbents for determination of environmental pollutants. TrAC Trends Anal Chem 119:115611. https://doi.org/10.1016/j.trac.2019.07.022

    Article  CAS  Google Scholar 

  4. Wang D-D, Zhao Y, Ou yang M-N et al (2019) Magnetic polydopamine modified with deep eutectic solvent for the magnetic solid-phase extraction of sulfonylurea herbicides in water samples. J Chromatogr A 1601:53–59. https://doi.org/10.1016/J.CHROMA.2019.05.011

    Article  CAS  PubMed  Google Scholar 

  5. Xiong Y-B, Lu Z-H, Wang D-D, Yang MNO, Guo HM, Yang ZH (2020) Application of polydopamine functionalized magnetic graphene in triazole fungicides residue analysis. J Chromatogr A 1614:460725. https://doi.org/10.1016/j.chroma.2019.460725

    Article  CAS  PubMed  Google Scholar 

  6. Senosy IA, Lu Z-H, Abdelrahman TM, Yang MNO, Guo HM, Yang ZH, Li JH (2020) The post-modification of magnetic metal–organic frameworks with β-cyclodextrin for the efficient removal of fungicides from environmental water. Environ Sci Nano 7:2087–2101. https://doi.org/10.1039/C9EN01372E

    Article  CAS  Google Scholar 

  7. Yi X, Liu C, Liu X, Wang P, Zhou Z, Liu D (2019) Magnetic partially carbonized cellulose nanocrystal-based magnetic solid phase extraction for the analysis of triazine and triazole pesticides in water. Microchim Acta 186:825. https://doi.org/10.1007/s00604-019-3911-x

    Article  CAS  Google Scholar 

  8. Liu L, Yang M, He M, Liu T, Chen F, Li Y, Feng X, Zhang Y, Zhang F (2020) Magnetic solid phase extraction sorbents using methyl-parathion and quinalphos dual-template imprinted polymers coupled with GC-MS for class-selective extraction of twelve organophosphorus pesticides Microchim Acta 187: https://doi.org/10.1007/s00604-020-04465-7

  9. Jiao L, Seow JYR, Skinner WS, Wang ZU, Jiang HL (2019) Metal–organic frameworks: structures and functional applications. Mater Today 27:43–68. https://doi.org/10.1016/j.mattod.2018.10.038

    Article  CAS  Google Scholar 

  10. Hashemi B, Zohrabi P, Raza N, Kim K-H (2017) Metal-organic frameworks as advanced sorbents for the extraction and determination of pollutants from environmental, biological, and food media. TrAC Trends Anal Chem 97:65–82. https://doi.org/10.1016/J.TRAC.2017.08.015

    Article  CAS  Google Scholar 

  11. Maya F, Palomino Cabello C, Frizzarin RM, Estela JM, Turnes Palomino G, Cerdà V (2017) Magnetic solid-phase extraction using metal-organic frameworks (MOFs) and their derived carbons. TrAC Trends Anal Chem 90:142–152. https://doi.org/10.1016/J.TRAC.2017.03.004

    Article  CAS  Google Scholar 

  12. Li X, Ma W, Li H, Bai Y, Liu H (2019) Metal-organic frameworks as advanced sorbents in sample preparation for small organic analytes. Coord Chem Rev 397:1–13. https://doi.org/10.1016/J.CCR.2019.06.014

    Article  CAS  Google Scholar 

  13. Wang C, Liu X, Keser Demir N, Chen JP, Li K (2016) Applications of water stable metal–organic frameworks. Chem Soc Rev 45:5107–5134. https://doi.org/10.1039/C6CS00362A

    Article  CAS  PubMed  Google Scholar 

  14. Yang Q, Zhao Q, Ren SS, Lu Q, Guo X, Chen Z (2016) Fabrication of core-shell Fe3O4@MIL-100(Fe) magnetic microspheres for the removal of Cr(VI) in aqueous solution. J Solid State Chem 244:25–30. https://doi.org/10.1016/j.jssc.2016.09.010

    Article  CAS  Google Scholar 

  15. Aslam S, Zeng J, Subhan F, Li M, Lyu F, Li Y, Yan Z (2017) In situ one-step synthesis of Fe3O4@MIL-100(Fe) core-shells for adsorption of methylene blue from water. J Colloid Interface Sci 505:186–195. https://doi.org/10.1016/j.jcis.2017.05.090

    Article  CAS  PubMed  Google Scholar 

  16. Pang L, Yang P, Yang H, Ge L, Xiao J, Zhou Y (2018) Application of Fe3O4@MIL-100 (Fe) core-shell magnetic microspheres for evaluating the sorption of organophosphate esters to dissolved organic matter (DOM). Sci Total Environ 626:42–47. https://doi.org/10.1016/j.scitotenv.2018.01.089

    Article  CAS  PubMed  Google Scholar 

  17. Wen M, Li G, Liu H, Chen J, An T, Yamashita H (2019) Metal-organic framework-based nanomaterials for adsorption and photocatalytic degradation of gaseous pollutants: recent progress and challenges. Environ Sci Nano 6:1006–1025. https://doi.org/10.1039/c8en01167b

    Article  CAS  Google Scholar 

  18. Meng Q, Liu J, Jiang Y, Teng Q (2019) Branched Polyethyleneimine-functionalized polystyrene resin: preparation and adsorption of Cu2+. J Chem Eng Data 64:2618–2626. https://doi.org/10.1021/acs.jced.9b00090

    Article  CAS  Google Scholar 

  19. Li N, Chen J, Shi YP (2017) Magnetic polyethyleneimine functionalized reduced graphene oxide as a novel magnetic solid-phase extraction adsorbent for the determination of polar acidic herbicides in rice. Anal Chim Acta 949:23–34. https://doi.org/10.1016/j.aca.2016.11.016

    Article  CAS  PubMed  Google Scholar 

  20. Xian S, Wu Y, Wu J, Wang X, Xiao J (2015) Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66. Ind Eng Chem Res 54:11151–11158. https://doi.org/10.1021/acs.iecr.5b03517

    Article  CAS  Google Scholar 

  21. Zhang Y, Guan J, Wang X, Yu J, Ding B (2017) Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS Appl Mater Interfaces 9:41087–41098. https://doi.org/10.1021/acsami.7b14635

    Article  CAS  PubMed  Google Scholar 

  22. Buerge IJ, Poiger T, Müller MD, Buser HR (2006) Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environ Sci Technol 40:5443–5450. https://doi.org/10.1021/es060817d

    Article  CAS  PubMed  Google Scholar 

  23. Lv X, Pan L, Wang J, Lu L, Yan W, Zhu Y, Xu Y, Guo M, Zhuang S (2017) Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. Environ Pollut 222:504–512. https://doi.org/10.1016/j.envpol.2016.11.051

    Article  CAS  PubMed  Google Scholar 

  24. Yu L, Chen M, Liu Y, Gui W, Zhu G (2013) Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquat Toxicol 138–139:35–42. https://doi.org/10.1016/j.aquatox.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  25. Lin CH, Chou PH, Chen PJ (2014) Two azole fungicides (carcinogenic triadimefon and non-carcinogenic myclobutanil) exhibit different hepatic cytochrome P450 activities in medaka fish. J Hazard Mater 277:150–158. https://doi.org/10.1016/j.jhazmat.2014.05.083

    Article  CAS  PubMed  Google Scholar 

  26. Zhu S, Fang S, Huo M, Yu Y, Chen Y, Yang X, Geng Z, Wang Y, Bian D, Huo H (2015) A novel conversion of the groundwater treatment sludge to magnetic particles for the adsorption of methylene blue. J Hazard Mater 292:173–179. https://doi.org/10.1016/J.JHAZMAT.2015.03.028

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Yang Q, Wang W, Wang C, Wang Z (2016) Covalent bonding of metal-organic framework-5/graphene oxide hybrid composite to stainless steel fiber for solid-phase microextraction of triazole fungicides from fruit and vegetable samples. J Agric Food Chem 64:2792–2801. https://doi.org/10.1021/acs.jafc.5b05831

    Article  CAS  PubMed  Google Scholar 

  28. Zhang CF, Qiu LG, Ke F, Zhu YJ, Yuan YP, Xu GS, Jiang X (2013) A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe) for the decolorization of methylene blue dye. J Mater Chem A 1:14329–14334. https://doi.org/10.1039/c3ta13030d

    Article  CAS  Google Scholar 

  29. Tian H, Peng J, Du Q et al (2018) One-pot sustainable synthesis of magnetic MIL-100(Fe) with novel Fe3O4 morphology and its application in heterogeneous degradation. Dalt Trans 47:3417–3424. https://doi.org/10.1039/c7dt04819j

    Article  CAS  Google Scholar 

  30. Liu G, Li L, Gao Y, Gao M, Huang X, Lv J, Xu D (2019) A beta-cyclodextrin-functionalized magnetic metal organic framework for efficient extraction and determination of prochloraz and triazole fungicides in vegetables samples. Ecotoxicol Environ Saf 183:109546. https://doi.org/10.1016/j.ecoenv.2019.109546

    Article  CAS  PubMed  Google Scholar 

  31. Han X, Chen J, Li Z, Quan K, Qiu H (2020) Magnetic solid-phase extraction of triazole fungicides based on magnetic porous carbon prepared by combustion combined with solvothermal method. Anal Chim Acta 1129:85–97. https://doi.org/10.1016/j.aca.2020.06.077

    Article  CAS  PubMed  Google Scholar 

  32. Caon NB, dos Cardoso CS, Faita FL et al (2020) Magnetic solid-phase extraction of triclosan from water using n-octadecyl modified silica-coated magnetic nanoparticles. J Environ Chem Eng 8:104003. https://doi.org/10.1016/j.jece.2020.104003

    Article  CAS  Google Scholar 

  33. Fan YH, Zhang SW, Bin QS et al (2017) Facile preparation of hexadecyl-functionalized magnetic core-shell microsphere for the extraction of polychlorinated biphenyls in environmental waters. Anal Bioanal Chem 409:3337–3346. https://doi.org/10.1007/s00216-017-0278-x

    Article  CAS  PubMed  Google Scholar 

  34. Liu C, Liao Y, Huang X (2017) Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent. J Chromatogr A 1524:13–20. https://doi.org/10.1016/j.chroma.2017.09.066

    Article  CAS  PubMed  Google Scholar 

  35. Yang J, Fan C, Kong D, Tang G, Zhang W, Dong H, Liang Y, Wang D, Cao Y (2018) Synthesis and application of imidazolium-based ionic liquids as extraction solvent for pretreatment of triazole fungicides in water samples. Anal Bioanal Chem 410:1647–1656. https://doi.org/10.1007/s00216-017-0820-x

    Article  CAS  PubMed  Google Scholar 

  36. Liu G, Li L, Huang X, Zheng S, Xu D, Xu X, Zhang Y, Lin H (2018) Determination of triazole pesticides in aqueous solution based on magnetic graphene oxide functionalized MOF-199 as solid phase extraction sorbents. Microporous Mesoporous Mater 270:258–264. https://doi.org/10.1016/j.micromeso.2018.05.023

    Article  CAS  Google Scholar 

  37. Huang X, Liu Y, Liu G, Li L, Xu X, Zheng S, Xu D, Gao H (2018) Preparation of a magnetic multiwalled carbon nanotube@polydopamine/zeolitic imidazolate framework-8 composite for magnetic solid-phase extraction of triazole fungicides from environmental water samples. RSC Adv 8:25351–25360. https://doi.org/10.1039/c8ra05064c

    Article  CAS  Google Scholar 

  38. Farajzadeh MA, Khoshmaram L, Mogaddam MRA (2012) Combination of solid-phase extraction-hollow fiber for ultra-preconcentration of some triazole pesticides followed by gas chromatography-flame ionization detection. J Sep Sci 35:121–127. https://doi.org/10.1002/jssc.201100374

    Article  CAS  PubMed  Google Scholar 

  39. Miao Q, Wang J, Nie J, Wu H, Liu Y, Li Z, Qian M (2016) Magnetic dispersive solid-phase extraction based on a novel adsorbent for the detection of triazole pesticide residues in honey by HPLC-MS/MS. Anal Methods 8:5296–5303. https://doi.org/10.1039/C6AY00376A

    Article  CAS  Google Scholar 

  40. Li D, He M, Chen B, Hu B (2019) Magnetic porous organic polymers for magnetic solid-phase extraction of triazole fungicides in vegetables prior to their determination by gas chromatography-flame ionization detection. J Chromatogr A 1601:1–8. https://doi.org/10.1016/j.chroma.2019.04.062

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was supported by grants from the National Key R&D Program of China [2019YFD1002103], National Key R&D Program of China [2017YFD020030803], and National Natural Science Foundation of China [No. 21507032].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Hua Yang or Jian-Hong Li.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 273 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senosy, I.A., Zhang, XZ., Lu, ZH. et al. Magnetic metal-organic framework MIL-100 (Fe)/polyethyleneimine composite as an adsorbent for the magnetic solid-phase extraction of fungicides and their determination using HPLC-UV. Microchim Acta 188, 33 (2021). https://doi.org/10.1007/s00604-020-04648-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04648-2

Keywords

Navigation