Skip to main content

Advertisement

Log in

Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrochemical biosensor is reported for simultaneous detection of two of the most common food-borne pathogens: Listeria monocytogenes and Staphylococcus aureus. The biosensor is composed of an array of gold nanoparticles-modified screen-printed carbon electrodes on which magnetic nanoparticles coupled to specific peptides were immobilized via streptavidin-biotin interaction. Taking advantage of the proteolytic activities of the protease enzymes produced from the two bacteria on the specific peptides, the detection was achieved in 1 min. The detection was realized by measuring the percentage increase of the square wave voltammetric peak current at 0.1 V versus a Ag/AgCl reference electrode in ferro/ferricyanide redox couple after incubation with the bacteria protease. The integration of the specificity of the bacterial enzymes towards their peptide substrates with the sensitivity of the electrochemical detection on the sensor array allows the rapid, sensitive and selective quantification of the two bacteria. Outstanding sensitivities were achieved using this biosensor array platform with limit of detection of 9 CFU mL−1 for Listeria monocytogenes and 3 CFU mL−1 for Staphylococcus aureus. The multiplexing capability and selectivity of the array voltammetric biosensor were demonstrated by analysing samples of Staphylococcus aureus, Listeria monocytogenes or E. coli and also containing a mixture of two or three bacteria. Using this biosensor, the two bacteria were successfully quantified simultaneously in one step without the need for DNA extraction or amplification techniques. This platform offers promise for rapid, simple and cost-effective simultaneous detection of various bacteria.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bintsis T (2017) Foodborne pathogens. AIMS Microbiol 3(3):529–563. https://doi.org/10.3934/microbiol.2017.3.529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stewart GC (2017) Chapter 18 - Staphylococcal food poisoning. In: Dodd CER, Aldsworth T, Stein RA, Cliver DO, Riemann HP (eds) Foodborne Diseases, 3rd edn. Academic Press, pp 367–380. https://doi.org/10.1016/B978-0-12-385007-2.00018-8

  3. Rees CED, Doyle L, Taylor CM (2017) Chapter 12 - Listeria monocytogenes. In: Dodd CER, Aldsworth T, Stein RA, Cliver DO, Riemann HP (eds) Foodborne Diseases, 3rd edn. Academic Press, pp 253–276. https://doi.org/10.1016/B978-0-12-385007-2.00012-7

  4. Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28(3):603–661. https://doi.org/10.1128/cmr.00134-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Otto M (2014) Staphylococcus aureus toxins. Curr Opin Microbiol 17:32–37. https://doi.org/10.1016/j.mib.2013.11.004

    Article  CAS  PubMed  Google Scholar 

  6. Thammavongsa V, Kim HK, Missiakas D, Schneewind O (2015) Staphylococcal manipulation of host immune responses. Nat Rev Microbiol 13(9):529–543. https://doi.org/10.1038/nrmicro3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55(3):476–511

    Article  CAS  Google Scholar 

  8. Southwick FS, Purich DL (1996) Intracellular pathogenesis of listeriosis. N Engl J Med 334(12):770–776. https://doi.org/10.1056/nejm199603213341206

    Article  CAS  PubMed  Google Scholar 

  9. Janakiraman V (2008) Listeriosis in pregnancy: diagnosis, treatment, and prevention. Rev Obstet Gynecol 1(4):179–185

    PubMed  PubMed Central  Google Scholar 

  10. Mylonakis E, Paliou M, Hohmann EL, Calderwood SB, Wing EJ (2002) Listeriosis during pregnancy: a case series and review of 222 cases. Medicine 81(4):260–269

    Article  Google Scholar 

  11. Nightingale KK, Schukken YH, Nightingale CR, Fortes ED, Ho AJ, Her Z, Grohn YT, McDonough PL, Wiedmann M (2004) Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol 70(8):4458–4467. https://doi.org/10.1128/aem.70.8.4458-4467.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mandal P, Biswas A, Choi K, Pal U (2011) Methods for rapid detection of foodborne pathogens: an overview. Am J Food Technol 6(2):87–102

    Article  Google Scholar 

  13. Law JW-F, Ab Mutalib N-S, Chan K-G, Lee L-H (2015) Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front Microbiol 5:770–770. https://doi.org/10.3389/fmicb.2014.00770

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14(7):599–624. https://doi.org/10.1016/S0956-5663(99)00039-1

    Article  CAS  Google Scholar 

  15. Rubab M, Shahbaz HM, Olaimat AN, Oh D-H (2018) Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosens Bioelectron 105:49–57. https://doi.org/10.1016/j.bios.2018.01.023

    Article  CAS  PubMed  Google Scholar 

  16. Soni DK, Ahmad R, Dubey SK (2018) Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev Microbiol 44(5):590–608. https://doi.org/10.1080/1040841x.2018.1473331

    Article  PubMed  Google Scholar 

  17. Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL (2007) Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study. Biosens Bioelectron 22(6):948–955. https://doi.org/10.1016/j.bios.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  18. Chen L, Deng L, Liu L, Peng Z (2007) Immunomagnetic separation and MS/SPR end-detection combined procedure for rapid detection of Staphylococcus aureus and protein A. Biosens Bioelectron 22(7):1487–1492. https://doi.org/10.1016/j.bios.2006.06.038

    Article  CAS  PubMed  Google Scholar 

  19. Tawil N, Sacher E, Mandeville R, Meunier M (2012) Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens Bioelectron 37(1):24–29. https://doi.org/10.1016/j.bios.2012.04.048

    Article  CAS  PubMed  Google Scholar 

  20. Tawil N, Mouawad F, Lévesque S, Sacher E, Mandeville R, Meunier M (2013) The differential detection of methicillin-resistant, methicillin-susceptible and borderline oxacillin-resistant Staphylococcus aureus by surface plasmon resonance. Biosens Bioelectron 49:334–340. https://doi.org/10.1016/j.bios.2013.05.031

    Article  CAS  PubMed  Google Scholar 

  21. Koubová V, Brynda E, Karasová L, Škvor J, Homola J, Dostálek J, Tobiška P, Rošický J (2001) Detection of foodborne pathogens using surface plasmon resonance biosensors. Sensors Actuators B Chem 74(1):100–105. https://doi.org/10.1016/S0925-4005(00)00717-6

    Article  Google Scholar 

  22. Schmelcher M, Shabarova T, Eugster MR, Eichenseher F, Tchang VS, Banz M, Loessner MJ (2010) Rapid multiplex detection and differentiation of <em>Listeria</em> cells by use of fluorescent phage endolysin cell wall binding domains. Appl Environ Microbiol 76(17):5745–5756. https://doi.org/10.1128/aem.00801-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang H, Ma X, Liu Y, Duan N, Wu S, Wang Z, Xu B (2015) Gold nanoparticles enhanced SERS aptasensor for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Biosens Bioelectron 74:872–877. https://doi.org/10.1016/j.bios.2015.07.033

    Article  CAS  PubMed  Google Scholar 

  24. Wang J, Wu X, Wang C, Shao N, Dong P, Xiao R, Wang S (2015) Magnetically assisted surface-enhanced Raman spectroscopy for the detection of Staphylococcus aureus based on aptamer recognition. ACS Appl Mater Interfaces 7(37):20919–20929. https://doi.org/10.1021/acsami.5b06446

    Article  CAS  PubMed  Google Scholar 

  25. Abdelhamid HN, Wu H-F (2013) Multifunctional graphene magnetic nanosheet decorated with chitosan for highly sensitive detection of pathogenic bacteria. J Mater Chem B 1(32):3950–3961. https://doi.org/10.1039/c3tb20413h

    Article  CAS  PubMed  Google Scholar 

  26. Xue X, Pan J, Xie H, Wang J, Zhang S (2009) Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CdSe quantum dots coupled with bacteria. Talanta 77(5):1808–1813. https://doi.org/10.1016/j.talanta.2008.10.025

    Article  CAS  PubMed  Google Scholar 

  27. Zuo P, Li X, Dominguez DC, Ye B-C (2013) A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab Chip 13(19):3921–3928. https://doi.org/10.1039/c3lc50654a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Miao T, Wang Z, Li S, Wang X (2011) Sensitive fluorescent detection of Staphylococcus aureus using nanogold linked CdTe nanocrystals as signal amplification labels. Microchim Acta 172(3):431–437. https://doi.org/10.1007/s00604-010-0505-z

    Article  CAS  Google Scholar 

  29. Shangguan J, Li Y, He D, He X, Wang K, Zou Z, Shi H (2015) A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus. Analyst 140(13):4489–4497. https://doi.org/10.1039/c5an00535c

    Article  CAS  PubMed  Google Scholar 

  30. Duan N, Wu S, Zhu C, Ma X, Wang Z, Yu Y, Jiang Y (2012) Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella Typhimurium and Staphylococcus aureus. Anal Chim Acta 723:1–6. https://doi.org/10.1016/j.aca.2012.02.011

    Article  CAS  PubMed  Google Scholar 

  31. Wu S, Duan N, Shi Z, Fang C, Wang Z (2014) Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Anal Chem 86(6):3100–3107. https://doi.org/10.1021/ac404205c

    Article  CAS  PubMed  Google Scholar 

  32. Wang X, Du Y, Li Y, Li D, Sun R (2011) Fluorescent identification and detection of Staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates. J Biomater Sci Polym Ed 22(14):1881–1893. https://doi.org/10.1163/092050610x528570

    Article  CAS  PubMed  Google Scholar 

  33. Braiek M, Rokbani KB, Chrouda A, Mrabet B, Bakhrouf A, Maaref A, Jaffrezic-Renault N (2012) An electrochemical immunosensor for detection of Staphylococcus aureus bacteria based on immobilization of antibodies on self-assembled monolayers-functionalized gold electrode. Biosensors (Basel) 2(4):417–426

    Article  CAS  Google Scholar 

  34. Bekir K, Barhoumi H, Braiek M, Chrouda A, Zine N, Abid N, Maaref A, Bakhrouf A, Ouada HB, Jaffrezic-Renault N, Mansour HB (2015) Electrochemical impedance immunosensor for rapid detection of stressed pathogenic Staphylococcus aureus bacteria. Environ Sci Pol 22(20):15796–15803. https://doi.org/10.1007/s11356-015-4761-7

    Article  CAS  Google Scholar 

  35. Jia F, Duan N, Wu S, Ma X, Xia Y, Wang Z, Wei X (2014) Impedimetric aptasensor for Staphylococcus aureus based on nanocomposite prepared from reduced graphene oxide and gold nanoparticles. Microchim Acta 181(9):967–974. https://doi.org/10.1007/s00604-014-1195-8

    Article  CAS  Google Scholar 

  36. Liu X, Marrakchi M, Xu D, Dong H, Andreescu S (2016) Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Biosens Bioelectron 80:9–16. https://doi.org/10.1016/j.bios.2016.01.041

    Article  CAS  PubMed  Google Scholar 

  37. Ward AC, Hannah AJ, Kendrick SL, Tucker NP, MacGregor G, Connolly P (2018) Identification and characterisation of Staphylococcus aureus on low cost screen printed carbon electrodes using impedance spectroscopy. Biosens Bioelectron 110:65–70. https://doi.org/10.1016/j.bios.2018.03.048

    Article  CAS  PubMed  Google Scholar 

  38. Chen Q, Wang D, Cai G, Xiong Y, Li Y, Wang M, Huo H, Lin J (2016) Fast and sensitive detection of foodborne pathogen using electrochemical impedance analysis, urease catalysis and microfluidics. Biosens Bioelectron 86:770–776. https://doi.org/10.1016/j.bios.2016.07.071

    Article  CAS  PubMed  Google Scholar 

  39. Kashish GS, Dubey SK, Prakash R (2015) Genosensor based on a nanostructured, platinum-modified glassy carbon electrode for Listeria detection. Anal Methods 7(6):2616–2622. https://doi.org/10.1039/c5ay00167f

    Article  CAS  Google Scholar 

  40. Xu L, Liang W, Wen Y, Wang L, Yang X, Ren S, Jia N, Zuo X, Liu G (2018) An ultrasensitive electrochemical biosensor for the detection of mecA gene in methicillin-resistant Staphylococcus aureus. Biosens Bioelectron 99:424–430. https://doi.org/10.1016/j.bios.2017.08.014

    Article  CAS  PubMed  Google Scholar 

  41. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2008) Electrochemical immunosensor designs for the determination of Staphylococcus aureus using 3,3-dithiodipropionic acid di(N-succinimidyl ester)-modified gold electrodes. Talanta 77(2):876–881. https://doi.org/10.1016/j.talanta.2008.07.045

    Article  CAS  Google Scholar 

  42. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2008) Immunosensor for the determination of Staphylococcus aureus using a tyrosinase–mercaptopropionic acid modified electrode as an amperometric transducer. Anal Bioanal Chem 391(3):837–845. https://doi.org/10.1007/s00216-007-1810-1

    Article  CAS  PubMed  Google Scholar 

  43. Escamilla-Gómez V, Campuzano S, Pedrero M, Pingarrón JM (2007) Development of an amperometric immunosensor for the quantification of Staphylococcus aureus using self-assembled monolayer-modified electrodes as immobilization platforms. Electroanalysis 19(14):1476–1482. https://doi.org/10.1002/elan.200703893

    Article  CAS  Google Scholar 

  44. Susmel S, Guilbault GG, O'Sullivan CK (2003) Demonstration of labeless detection of food pathogens using electrochemical redox probe and screen printed gold electrodes. Biosens Bioelectron 18(7):881–889. https://doi.org/10.1016/S0956-5663(02)00214-2

    Article  CAS  PubMed  Google Scholar 

  45. Sun W, Qi X, Zhang Y, Yang H, Gao H, Chen Y, Sun Z (2012) Electrochemical DNA biosensor for the detection of Listeria monocytogenes with dendritic nanogold and electrochemical reduced graphene modified carbon ionic liquid electrode. Electrochim Acta 85:145–151. https://doi.org/10.1016/j.electacta.2012.07.133

    Article  CAS  Google Scholar 

  46. Alhogail S, Suaifan GARY, Zourob M (2016) Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen. Biosens Bioelectron 86:1061–1066. https://doi.org/10.1016/j.bios.2016.07.043

    Article  CAS  PubMed  Google Scholar 

  47. Suaifan GARY, Alhogail S, Zourob M (2017) Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Biosens Bioelectron 90:230–237. https://doi.org/10.1016/j.bios.2016.11.047

    Article  CAS  PubMed  Google Scholar 

  48. Kaman WE, Voskamp-Visser I, de Jongh DMC, Endtz HP, van Belkum A, Hays JP, Bikker FJ (2013) Evaluation of a D-amino-acid-containing fluorescence resonance energy transfer peptide library for profiling prokaryotic proteases. Anal Biochem 441(1):38–43. https://doi.org/10.1016/j.ab.2013.06.015

    Article  CAS  PubMed  Google Scholar 

  49. Eissa S, Abdulkarim H, Dasouki M, Al Mousa H, Arnout R, Al Saud B, Rahman AA, Zourob M (2018) Multiplexed detection of DOCK8, PGM3 and STAT3 proteins for the diagnosis of hyper-immunoglobulin E syndrome using gold nanoparticles-based immunosensor array platform. Biosens Bioelectron 117:613–619. https://doi.org/10.1016/j.bios.2018.06.058

    Article  CAS  PubMed  Google Scholar 

  50. Almonte L, Lopez-Elvira E, Baró AM (2014) Surface-charge differentiation of streptavidin and avidin by atomic force microscopy–force spectroscopy. ChemPhysChem 15(13):2768–2773. https://doi.org/10.1002/cphc.201402234

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Duha Fawzi Saad for preparing the bacterial culture.

Funding

The authors would like to thank the King Abdulaziz City for Science and Technology (KACST) for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Zourob.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eissa, S., Zourob, M. Ultrasensitive peptide-based multiplexed electrochemical biosensor for the simultaneous detection of Listeria monocytogenes and Staphylococcus aureus. Microchim Acta 187, 486 (2020). https://doi.org/10.1007/s00604-020-04423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04423-3

Keywords

Navigation