Skip to main content
Log in

Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive fluorometric assay is described for the direct determination of the antibiotic sulfadiazine. Silver nanoparticles placed on graphene quantum dots (Ag NP-GQDs) were synthesized by reduction of AgNO3 with sodium borohydride in the presence of GQDs. The growth of Ag NPs on the surface of the GQDs causes quenching of the blue fluorescence of the GQDs with an emission maximum at 470 nm by surface-enhanced energy transfer. If sulfadiazine is added, it interacts with Ag NPs and fluorescence is restored. Under optimal conditions, the fluorescence increases linearly in the sulfadiazine concentration range of 0.04–22.0 μM. The detection limit is 10 nM with relative standard deviations of 2.3 and 4.2 (at 10 μM of sulfadiazine; for n = 6) for intra- and inter-day assays.

Schematic representation of sulfadiazine determination using Ag NP-GQDs as a fluorescent nanoprobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang X, Li K, Shi D, Xiong N, Jin X, Yi J, Bi D (2007) Development of an immunochromatographic lateral-flow test strip for rapid detection of sulfonamides in eggs and chicken muscles. J Agric Food Chem 55:2072–2078

    Article  CAS  Google Scholar 

  2. Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342

    Article  CAS  Google Scholar 

  3. Korpimäki T, Hagren V, Brockmann EC, Tuomola M (2004) Generic lanthanide fluoroimmunoassay for the simultaneous screening of 18 sulfonamides using an engineered antibody. Anal Chem 76:3091–3098

    Article  Google Scholar 

  4. Ibarra IS, Miranda JM, Rodriguez JA, Nebot C, Cepeda A (2014) Magnetic solid phase extraction followed by high-performance liquid chromatography for the determination of sulphonamides in milk samples. Food Chem 157:511–517

    Article  CAS  Google Scholar 

  5. Liu H, Ren J, Hao Y, He P, Fang Y (2007) Flow injection–chemiluminescence determination of sulfadiazine in compound naristillae. Talanta 72:1036–1041

    Article  CAS  Google Scholar 

  6. Lu F, Li H, Sun M, Fan L, Qiu H, Li X, Luo C (2012) Flow injection chemiluminescence sensor based on core–shell magnetic molecularly imprinted nanoparticles for determination of sulfadiazine. Anal Chim Acta 718:84–91

    Article  CAS  Google Scholar 

  7. Kazemi E, Dadfarnia S, Haji Shabani AM, Fattahi MR, Khodaveisi J (2017) Indirect spectrophotometric determination of sulfadiazine based on localized surface plasmon resonance peak of silver nanoparticles after cloud point extraction. Spectrochim Acta, Part A 187:30–35

    Article  CAS  Google Scholar 

  8. Kazemi E, Dadfarnia S, Haji Shabani AM, Abbasi A, Vaziri MR, Behjat A (2016) Iron oxide functionalized graphene oxide as an efficient sorbent for dispersive micro-solid phase extraction of sulfadiazine followed by spectrophotometric and mode-mismatched thermal lens spectrometric determination. Talanta 147:561–568

    Article  CAS  Google Scholar 

  9. Reguera C, Ortiz MC, Herrero A, Sarabia LA (2008) Optimization of a FIA system with amperometric detection by means of a desirability function: determination of sulfadiazine, sulfamethazine and sulfamerazine in milk. Talanta 75:274–283

    Article  CAS  Google Scholar 

  10. He Y, Zhang B, Fan Z (2018) Aptamer based fluorometric sulfamethazine assay based on the use of graphene oxide quantum dots. Microchim Acta 185:163

    Article  Google Scholar 

  11. Zhou Z, Ying H, Liu Y, Xu W, Yang Y, Luan Y, Lu Y, Liu T, Yu S, Yang W (2017) Synthesis of surface molecular imprinting polymer on SiO2-coated CdTe quantum dots as sensor for selective detection of sulfadimidine. Appl Surf Sci 404:188–196

    Article  CAS  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200

    Article  CAS  Google Scholar 

  13. Wu Z, Li W, Chen J, Yu CA (2014) Graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols. Talanta 119:538–543

    Article  CAS  Google Scholar 

  14. Dutta Chowdhury A, Doong RA (2016) Highly sensitive and selective detection of nanomolar ferric ions using dopamine functionalized graphene quantum dots. ACS Appl Mater Interfaces 8:21002–21010

    Article  CAS  Google Scholar 

  15. Liu R, Yang R, Qu C, Mao H, Hu Y, Li J, Qu L (2017) Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sensors Actuators B Chem 241:644–651

    Article  CAS  Google Scholar 

  16. Achadu OJ, Uddin I, Nyokong T (2016) Fluorescence behavior of nanoconjugates of graphene quantum dots and zinc phthalocyanines. J Photochem Photobiol A 317:12–25

    Article  CAS  Google Scholar 

  17. Zhao J, Zhao L, Lan C, Zhao S (2016) Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine. Sensors Actuators B Chem 223:246–251

    Article  CAS  Google Scholar 

  18. Ju J, Chen W (2014) Synthesis of highly fluorescent nitrogen-doped graphene quantum dots for sensitive, label-free detection of Fe (III) in aqueous media. Biosens Bioelectron 58:219–225

    Article  CAS  Google Scholar 

  19. Lin L, Rong M, Luo F, Chen D, Wang Y, Chen X (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  20. Yan X, Li B, Li LS (2012) Colloidal graphene quantum dots with well-defined structures. Acc Chem Res 46:2254–2262

    Article  Google Scholar 

  21. Li L, Wu G, Yang G, Peng J, Zhao J, Zhu JJ (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015–4039

    Article  CAS  Google Scholar 

  22. Zhang Z, Zhang J, Chen N, Qu L (2012) Graphene quantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5:8869–8890

    Article  CAS  Google Scholar 

  23. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  CAS  Google Scholar 

  24. Chen S, Quan Y, Yu YL, Wang JH (2017) Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomater Sci Eng 3:313–321

    Article  CAS  Google Scholar 

  25. Huang S, Wang L, Huang C, Hu B, Su W, Xiao Q (2016) Graphene quantum dot coupled with gold nanoparticle based “off-on” fluorescent probe for sensitive and selective detection of L-cysteine. Microchim Acta 183:1855–1864

    Article  CAS  Google Scholar 

  26. He FA, Fan JT, Song F, Zhang LM, Chan HL (2011) Fabrication of hybrids based on graphene and metal nanoparticles by in situ and self-assembled methods. Nanoscale 3:1182–1188

    Article  CAS  Google Scholar 

  27. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y, Yao S (2015) Hydroxyl-rich C-dots synthesized by a one-pot method and their application in the preparation of noble metal nanoparticles. Chem Commun 51:7164–7167

    Article  CAS  Google Scholar 

  28. Chen C, Zhao D, Hu T, Sun J, Yang X (2017) Highly fluorescent nitrogen and sulfur co-doped graphene quantum dots for an inner filter effect-based cyanide sensor. Sensors Actuators B Chem 241:779–788

    Article  CAS  Google Scholar 

  29. Chen S, Hai X, Chen XW, Wang JH (2014) In situ growth of silver nanoparticles on graphene quantum dots for ultrasensitive colorimetric detection of H2O2 and glucose. Anal Chem 86:6689–6694

    Article  CAS  Google Scholar 

  30. Pei H, Zhu S, Yang M, Kong R, Zheng Y, Qu F (2015) Graphene oxide quantum dots@ silver core–shell nanocrystals as turn-on fluorescent nanoprobe for ultrasensitive detection of prostate specific antigen. Biosens Bioelectron 74:909–914

    Article  CAS  Google Scholar 

  31. Kong RM, Yang A, Wang Q, Wang Y, Ma L, Qu F (2018) Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@ silver core-shell nanocomposites. Microchim Acta 185:63

    Article  Google Scholar 

  32. Yu W, Liu Z, Cui S, Zhang S, Yang X, Lei L, Zhang H, Yu A (2014) In-syringe ionic liquid dispersive liquid–liquid microextraction for the determination of sulfonamides in blood using high-performance liquid chromatography. Anal Methods 6:2545–2552

    Article  CAS  Google Scholar 

  33. Nagaraja P, Naik SD, Shrestha AK, Shivakumar A (2007) A sensitive spectrophotometric method for the determination of sulfonamides in pharmaceutical preparations. Acta Pharma 57:333–342

    CAS  Google Scholar 

  34. Nagaraja P, Sunitha KR, Vasantha RA, Yathirajan HS (2002) Iminodibenzyl as a novel coupling agent for the spectrophotometric determination of sulfonamide derivatives. Eur J Pharm Biopharm 53:187–192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ali Mohammad Haji Shabani or Shayessteh Dadfarnia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1266 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afsharipour, R., Haji Shabani, A.M., Dadfarnia, S. et al. Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots. Microchim Acta 187, 54 (2020). https://doi.org/10.1007/s00604-019-4001-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-4001-9

Keywords

Navigation