Skip to main content
Log in

A composite prepared from BiOBr and gold nanoparticles with electron sink and hot-electron donor properties for photoelectrochemical aptasensing of tetracycline

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A photoelectrochemical (PEC) aptasensor is described for detecting tetracycline (TC). A gold nanoparticles/BiOBr (AuNPs/BiOBr) composite was prepared where the AuNPs play a key function in carrier transfer which is ascribed to the wavelength-dependent dual function as an electron sink and as a hot-electron donor. Due to this dual function, the composite exhibits a wide photo-response and high electron transfer efficiency. This results in enormously enhanced PEC response. The TC-aptamer was immobilized on an ITO modified with AuNPs/BiOBr via Au-S covalent bonding. The resulting PEC aptasensor possesses a wide linear range (1–104 ng L−1) and a low detection limit (0.35 ng L−1; at S/N = 3).

Schematic representation of a photoelectrochemical aptasensor for tetracycline based on the use of a AuNP/BiOBr composite with electron sink and hot-electron donor properties of the gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ouyang Q, Liu Y, Chen QS, Guo ZM, Zhao JW, Li HH, Hu WW (2017) Rapid and specific sensing of tetracycline in food using a novel upconversion aptasensor. Food Control 81:156–163

    Article  CAS  Google Scholar 

  2. Xu N, Meng L, Li HW, Lu DY, Wu YQ (2018) Polyethyleneimine capped bimetallic Au/Pt nanoclusters are a viable fluorescent probe for specific recognition of chlortetracycline among other tetracycline antibiotics. Microchim Acta 185:294

    Article  Google Scholar 

  3. El Hassani NE, Baraket A, Boudjaoui S, Neto ETT, Bausells J, El Bari N, Bouchikhi B, Elaissari A, Errachid A, Zine N (2019) Development and application of a novel electrochemical immunosensor for tetracycline screening in honey using a fully integrated electrochemical BioMEMS. Biosens Bioelectron 130:137–143

    Google Scholar 

  4. Liu HC, Chen LG, Ding J (2017) A core-shell magnetic metal organic framework of type Fe3O4@ZIF-8 for the extraction of tetracycline antibiotics from water samples followed by ultra-HPLC-MS analysis. Microchim Acta 184:4091–4098

    Article  CAS  Google Scholar 

  5. Sheng W, Chang Q, Shi YJ, Duan WX, Zhang Y, Wang S (2018) Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Microchim Acta 185:404

    Article  Google Scholar 

  6. Jadhav MR, Puddle A, Raut P, Utture S, Shabeer TPA, Banerjee K (2019) A unified approach for high-throughput quantitative analysis of the residues of multi-class veterinary drugs and pesticides in bovine milk using LC-MS/MS and GC–MS/MS. Food Chem 272:292–305

    Article  CAS  Google Scholar 

  7. Qin XF, Geng LP, Wang QQ, Wang Y (2019) Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles. Microchim Acta 186:430

    Article  Google Scholar 

  8. Qiu ZL, Shu J, Liu JF, Tang DP (2019) Dual-channel photoelectrochemical ratiometric aptasensor with up-converting nanocrystals using spatial-resolved technique on homemade 3D printed device. Anal Chem 91:1260–1268

    Article  CAS  Google Scholar 

  9. Tang L, Ouyang XL, Peng B, Zeng GM, Zhu Y, Yu JF, Feng CY, Fang SY, Zhu X, Tan JS (2019) Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Au/g-C3N4 Z-scheme heterojunction dagger. Nanoscale 11:12198–12209

    Article  CAS  Google Scholar 

  10. Yang L, Zhong X, Huang LJ, Deng HM, Yuan R, Yuan YL (2019) C-60@C3N4 nanocomposites as quencher for signal-off photoelectrochemical aptasensor with Au nanoparticle decorated perylene tetracarboxylic acid as platform. Anal Chim Acta 1077:281–287

    Article  CAS  Google Scholar 

  11. Liu YL, Da HM, Chai YQ, Yuan R, Liu HY (2019) Photoelectrochemical aptamer-based sensing of the vascular endothelial growth factor by adjusting the light harvesting efficiency of g-C3N4 via porous carbon spheres. Microchim Acta 186:275

    Article  Google Scholar 

  12. Yan PC, Dong JT, Mo Z, Xu L, Qian JC, Xia JC, Zhang JM, Li HN (2020) Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering. Biosens Bioelectron 148:111802

    Article  CAS  Google Scholar 

  13. Zhou Q, Xue HJ, Zhang YY, Lv YQ, Li HG, Liu SQ, Shen YF, Zhang YJ (2018) A metal-free all-carbon nanohybrid for ultra-sensitive photoelectrochemical immunosensing of alpha-fetoprotein. ACS Sens 3:1385–1391

    Article  CAS  Google Scholar 

  14. Fard SG, Haghighi M, Shabani M (2019) Facile one-pot ultrasound-assisted solvothermal fabrication of ball-flowerlike nanostructured (BiOBr)(x)(Bi7O9I3)(1-x) solid-solution for high active photodegradation of antibiotic levofloxacin under sun-light. Appl Catal B 248:320–331

    Article  CAS  Google Scholar 

  15. Yan PC, Jiang DS, Tian YH, Xu L, Qian JC, Li HN, Xia JX, Li HM (2018) A sensitive signal-on photoelectrochemical sensor for tetracycline determination using visible-light-driven flower-like CN/BiOBr composites. Biosens Bioelectron 111:74–81

    Article  CAS  Google Scholar 

  16. Rashid J, Abbas A, Chang LC, Iqbal A, Ul Haq I, Rehman A, Awan SU, Arshad M, Rafique M, Barakat MA (2019) Butterfly cluster like lamellar BiOBr/TiO2 nanocomposite for enhanced sunlight photocatalytic mineralization of aqueous ciprofloxacin. Sci Total Environ 665:6113–6121

    Article  Google Scholar 

  17. Liu T, Song YP, Wang SS, Li YJ, Yin ZY, Qiu JB, Yang ZW, Song ZG (2019) Two distinct simultaneous NIR looping behaviors of Er3+ singly doped BiOBr: the underlying nature of the Er3+ ion photon avalanche emission induced by a layered structure. J Alloys Compd 779:440–449

    Article  CAS  Google Scholar 

  18. Wu J, Li XD, Shi W, Ling PQ, Sun YF, Jiao XC, Gao S, Liang L, Xu JQ, Yan WS, Wang CM, Xie Y (2018) Efficient visible-light-driven CO2 reduction mediated by defect-engineered BiOBr atomic layers. Angew Chem Int Ed 57:8719–8723

    Article  CAS  Google Scholar 

  19. Liu HJ, Du CW, Li M, Zhang SS, Bai HK, Yang L, Zhang SQ (2018) One-pot hydrothermal synthesis of SnO2/BiOBr heterojunction photocatalysts for the efficient degradation of organic pollutants under visible light. ACS Appl Mater Interfaces 10:28686–28694

    Article  CAS  Google Scholar 

  20. Zhang X, Liu Y, Lee ST, Yang SH, Kang ZH (2014) Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting. Energy Environ Sci 7:1409–1419

    Article  CAS  Google Scholar 

  21. Lou S, Zhou ZX, Shen YF, Zhan ZS, Wang JH, Liu SQ, Zhang YJ (2016) A comparison study of the photoelectrochemical activity of carbon nitride with different photoelectrode configurations. ACS Appl Mater Interfaces 8:22287–22294

    Article  CAS  Google Scholar 

  22. Fu BH, Zhang ZH (2018) Periodical 2D photonic-plasmonic Au/TiOx nanocavity resonators for photoelectrochemical applications. Small 14:1703610

    Article  Google Scholar 

  23. Wang LJ, Gu WH, Sheng PT, Zhang ZW, Zhang B, Cai QY (2019) A label-free cytochrome c photoelectrochemical aptasensor based on CdS/CuInS2/Au/TiO2 nanotubes. Sensors Actuators B Chem 281:1088–1096

    Article  CAS  Google Scholar 

  24. Cao LD, Ma DK, Zhou ZL, Xu CL, Cao C, Zhao PY, Huang QL (2019) Efficient photocatalytic degradation of herbicide glyphosate in water by magnetically separable and recyclable BiOBr/Fe3O4 nanocomposites under visible light irradiation. Chem Eng J 368:212–222

    Article  CAS  Google Scholar 

  25. Ren XZ, Wu K, Qin ZG, Zhao XC, Yang H (2019) The construction of type II heterojunction of Bi2WO6/BiOBr photocatalyst with improved photocatalytic performance. J Alloys Compd 788:102–109

    Article  CAS  Google Scholar 

  26. Ye LQ, Liu JY, Jiang Z, Peng TY, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B 143:1–7

    Google Scholar 

  27. Du XJ, Dai LM, Jiang D, Li HN, Hao N, You TY, Mao HP, Wang K (2017) Gold nanrods plasmon-enhanced photoelectrochemical aptasensing based on hematite/N-doped graphene films for ultrasensitive analysis of 17β-estradiol. Biosens Bioelectron 91:706–713

    Article  CAS  Google Scholar 

  28. Yan PC, Jiang DS, Li HN, Biao, J, Xu L, Qian JC, Chen C, Xia JX (2019) BiPO4 nanocrystal/BiOCl nanosheet heterojunction as the basis for a photoelectrochemical 4-chlorophenol sensor. Sensor Actuat B:Chem 279:466–475

    Article  CAS  Google Scholar 

  29. Sahoo M, Mansingh S, Parida KM (2019) A bimetallic Au-Ag nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benzaldehyde and nitrobenzene to aniline under visible light. J Mater Chem A 7:7614–7627

    Article  CAS  Google Scholar 

  30. Yan K, Liu Y, Yang YH, Zhang JD (2015) A cathodic “signal-off” photoelectrochemical aptasensor for ultrasensitive and selective detection of oxytetracycline. Anal Chem 87:12215–12220

    Article  CAS  Google Scholar 

  31. Qu F, Sun Z, Liu D, Zhao X, You J (2016) Direct and indirect fluorescent detection of tetracyclines using dually emitting carbon dots. Microchim Acta 183:2547–2553

    Article  CAS  Google Scholar 

  32. Li HB, Li J, Qiao YF, Fang HL, Fan DH, Wang W (2017) Nano-gold plasmon coupled with dual-function quercetin for enhanced photoelectrochemical aptasensor of tetracycline. Sensors Actuators B Chem 243:1027–1033

    Article  CAS  Google Scholar 

  33. Han QZ, Wang YR, Xing B, Chi HT, Wu D, Wei Q (2018) Label-free photoelectrochemical aptasensor for tetracycline detection based on cerium doped CdS sensitized BiYWO6. Biosens Bioelectron 106:7–13

    Article  CAS  Google Scholar 

  34. Zhang X, Zhang R, Yang A, Wang Q, Kong R, Qu F (2017) Aptamer based photoelectrochemical determination of tetracycline using a spindle-like ZnO-CdS@Au nanocomposite. Microchim Acta 184:4367–4374

    Article  CAS  Google Scholar 

  35. Liu B, Zhang B, Chen G, Tang D (2014) Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Microchim Acta 181:257–262

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Natural Science Foundation of China (No. 21676128, 21705058), Six Talent Peaks Project of Jiangsu Province (XNY-009), the Provincial Natural Science Foundation of Jiangsu (No. BK20170524), Chinese Postdoctoral Foundation (2018 T110450), High-tech Research Key laboratory of Zhenjiang (SS2018002) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Xu or Huaming Li.

Ethics declarations

Declaration of interests

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1.41 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Li, H., Yan, P. et al. A composite prepared from BiOBr and gold nanoparticles with electron sink and hot-electron donor properties for photoelectrochemical aptasensing of tetracycline. Microchim Acta 186, 794 (2019). https://doi.org/10.1007/s00604-019-3954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3954-z

Keywords

Navigation