Skip to main content
Log in

Peroxidase-like activity of vanadium tetrasulfide submicrospheres and its application to the colorimetric detection of hydrogen peroxide and L-cysteine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

It is demonstrated that vanadium tetrasulfide (VS4) exhibits peroxidase (POx)-like activity which follows Michaelis-Menten kinetics when using H2O2 as a co-substrate. Electron spin resonance spectroscopy was use to analyze the catalytic mechanism. It suggests that the enzyme mimicking activity is caused by decomposing H2O2 into hydroxyl radicals. The method was used to quantify H2O2 by using 3,3′,5,5′-tetramethylbenzidine as the substrate which results in the formation of a blue coloration (with an absorption peak at 652 nm). H2O2 can be detected in the 50 to 300 μM concentration range, and the detection limit is 5.0 μM. The assay for L-cysteine (L-cys) is based on the capability of oxTMB to oxidize L-cys to form L-cystine. The colorimetric L-cys assay has a linear response in the 5 to 100 μM concentration range and a 2.5 μM detection limit.

Schematic representation of the enzyme mimicking activity of vanadium tetrasulfide (VS4) submicrospheres originated from the decomposition of hydrogen peroxide (H2O2) to generate reactive hydroxyl radical (·OH) and the colorimetric detection of L-cysteine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2:577–583. https://doi.org/10.1038/nnano.2007.260

    Article  CAS  PubMed  Google Scholar 

  2. Huang Y, Liu Z, Liu C, Ju E, Zhang Y, Ren J et al (2016) Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew Chem Int Ed 55:6646–6650. https://doi.org/10.1002/anie.201600868

    Article  CAS  Google Scholar 

  3. Chen C, Wang Y, Yang Z, Zhang D (2019) Layered double hydroxide derived ultrathin 2D Ni-V mixed metal oxide as a robust peroxidase mimic. Chem Eng J 369:161–169. https://doi.org/10.1016/j.cej.2019.03.070

    Article  CAS  Google Scholar 

  4. Wang Y, Zhang D, Wang J (2017) Metastable alpha-AgVO3 microrods as peroxidase mimetics for colorimetric determination of H2O2. Microchim Acta 185:1. https://doi.org/10.1007/s00604-017-2562-z

    Article  CAS  Google Scholar 

  5. André R, Natálio F, Humanes M, Leppin J, Heinze K, Wever R et al (2011) V2O5 nanowires with an intrinsic peroxidase-like activity. Adv Funct Mater 21:501–509. https://doi.org/10.1002/adfm.201001302

    Article  CAS  Google Scholar 

  6. Yang Z, Cao Y, Li J, Lu M, Jiang Z, Hu X (2016) Smart CuS nanoparticles as peroxidase mimetics for the design of novel label-free chemiluminescent immunoassay. ACS Appl Mater Interfaces 8:12031–12038. https://doi.org/10.1021/acsami.6b02481

    Article  CAS  PubMed  Google Scholar 

  7. Dai Z, Liu S, Bao J, Ju H (2009) Nanostructured FeS as a mimic peroxidase for biocatalysis and biosensing. Chemistry 15:4321–4326. https://doi.org/10.1002/chem.200802158

    Article  CAS  PubMed  Google Scholar 

  8. Ding CP, Yan Y, Xiang DS, Zhang CL, Xian YZ (2016) Magnetic Fe3S4 nanoparticles with peroxidase-like activity, and their use in a photometric enzymatic glucose assay. Microchim Acta 183:625–631. https://doi.org/10.1007/s00604-015-1690-6)

    Article  CAS  Google Scholar 

  9. Lin T, Zhong L, Guo L, Fu F, Chen G (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6:11856–11862. https://doi.org/10.1039/c4nr03393k

    Article  CAS  PubMed  Google Scholar 

  10. Mu J, Li J, Zhao X, Yang EC, Zhao XJ (2018) Novel urchin-like Co9S8 nanomaterials with efficient intrinsic peroxidase-like activity for colorimetric sensing of copper (II) ion. Sensors Actuators B-Chem 258:32–41. https://doi.org/10.1016/j.snb.2017.11.057

    Article  CAS  Google Scholar 

  11. Rout CS, Kim BH, Xu X, Yang J, Jeong HY, Odkhuu D et al (2013) Synthesis and characterization of patronite form of vanadium sulfide on graphitic layer. J Am Chem Soc 135:8720–8725. https://doi.org/10.1021/ja403232d

    Article  CAS  PubMed  Google Scholar 

  12. Zhang L, Wei Q, Sun D, Li N, Ju H, Feng J et al (2018) Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: reversible or not reversible? Nano Energy 51:391–399. https://doi.org/10.1016/j.nanoen.2018.06.076

    Article  CAS  Google Scholar 

  13. Wang Y, Liu Z, Wang C, Yi X, Chen R, Ma L et al (2018) Highly branched VS4 Nanodendrites with 1D atomic-chain structure as a promising cathode material for long-cycling magnesium batteries. Adv Mater 30:e1802563. https://doi.org/10.1002/adma.201802563

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q, Wan H, Liu G, Ding Z, Mwizerwa JP, Yao X (2019) Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries. Nano Energy 57:771–782. https://doi.org/10.1016/j.nanoen.2019.01.004

    Article  CAS  Google Scholar 

  15. Wang W, Rusin O, Xu X, Kim KK, Escobedo JO, Fakayode SO et al (2005) Detection of Homocysteine and cysteine. J Am Chem Soc 127:15949–15958. https://doi.org/10.1021/ja054962n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Forgacsova A, Galba J, Mojzisova J, Mikus P, Piestansky J, Kovac A (2019) Ultra-high performance hydrophilic interaction liquid chromatography-triple quadrupole tandem mass spectrometry method for determination of cysteine, homocysteine, cysteinyl-glycine and glutathione in rat plasma. J Pharm Biomed Anal 164:442–451. https://doi.org/10.1016/j.jpba.2018.10.053

    Article  CAS  PubMed  Google Scholar 

  17. Ziyatdinova G, Kozlova E, Budnikov H (2018) Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine. Electrochim Acta 270:369–377. https://doi.org/10.1016/j.electacta.2018.03.102

    Article  CAS  Google Scholar 

  18. Li ZJ, Zheng XJ, Zhang L, Liang RP, Li ZM, Qiu JD (2015) Label-free colorimetric detection of biothiols utilizing SAM and unmodified Au nanoparticles. Biosens Bioelectron 68:668–674. https://doi.org/10.1016/j.bios.2015.01.062

    Article  CAS  PubMed  Google Scholar 

  19. Waseem A, Yaqoob M, Nabi A (2008) Flow-injection determination of cysteine in pharmaceuticals based on luminol-persulphate chemiluminescence detection. Luminescence 23:144–149. https://doi.org/10.1002/bio.1024

    Article  CAS  PubMed  Google Scholar 

  20. Zheng C, Zheng AX, Liu B, Zhang XL, He Y, Li J et al (2014) One-pot synthesized DNA-templated Ag/Pt bimetallic nanoclusters as peroxidase mimics for colorimetric detection of thrombin. Chem Commun 50:13103–13106. https://doi.org/10.1039/c4cc05339g

    Article  CAS  Google Scholar 

  21. Yang Z, Zhu Y, Nie G, Li M, Wang C, Lu X (2017) FeCo nanoparticles-embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of L-cysteine. Dalton Trans 46:8942–8949. https://doi.org/10.1039/c7dt01611e

    Article  CAS  PubMed  Google Scholar 

  22. Gao M, Lu X, Chi M, Chen S, Wang C (2017) Fabrication of oxidase-like hollow MnCo2O4 nanofibers and their sensitive colorimetric detection of sulfite and l-cysteine. Inorg Chem Front 4:1862–1869. https://doi.org/10.1039/c7qi00458c

    Article  CAS  Google Scholar 

  23. Ray C, Dutta S, Sarkar S, Sahoo R, Roy A, Pal T (2014) Intrinsic peroxidase-like activity of mesoporous nickel oxide for selective cysteine sensing. J Mater Chem B 2:6097. https://doi.org/10.1039/c4tb00968a

    Article  CAS  Google Scholar 

  24. Wu LL, Wang LY, Xie ZJ, Pan N, Peng CF (2016) Colorimetric assay of L-cysteine based on peroxidase-mimicking DNA-Ag/Pt nanoclusters. Sensors Actuators B Chem 235:110–116. https://doi.org/10.1016/j.snb.2016.05.069

    Article  CAS  Google Scholar 

  25. Zhou Y, Li Y, Yang J, Tian J, Xu H, Yang J et al (2016) Conductive polymer-coated VS4 submicrospheres as advanced electrode materials in lithium-ion batteries. ACS Appl Mater Interfaces 8:18797–18805. https://doi.org/10.1021/acsami.6b04444

    Article  CAS  PubMed  Google Scholar 

  26. Li W, Huang J, Feng L, Cao L, He S (2018) 3D self-assembled VS4 microspheres with high pseudocapacitance as highly efficient anodes for Na-ion batteries. Nanoscale 10:21671–21680. https://doi.org/10.1039/c8nr06458j

    Article  CAS  PubMed  Google Scholar 

  27. Hiner ANP, Hernández-Ruíz J, Arnao MB, García-Cánovas F, Acosta M (1996) Acomparative study of the purity, enzyme activity, and inactivation byhydrogen peroxide of commercially available horseradish peroxidaseisoenzymes. Biotechnol Bioeng 20:655–662. https://doi.org/10.1002/(SICI)1097-0290(19960620)50:6<655::AID-BIT6>3.0.CO;2-J

    Article  Google Scholar 

  28. Li X, Yang XY, Sha JQ, Han T, Du CJ, Sun YJ et al (2019) POMOF/SWNT nanocomposites with prominent peroxidase-mimicking activity for l-cysteine “on-off switch” colorimetric biosensing. ACS Appl Mater Interfaces 11:16896–16904. https://doi.org/10.1021/acsami.9b00872

    Article  CAS  PubMed  Google Scholar 

  29. Mohammadpour Z, Safavi A, Shamsipur M (2014) A new label free colorimetric chemosensor for detection of mercury ion with tunable dynamic range using carbon nanodots as enzyme mimics. Chem Eng J 255:1–7. https://doi.org/10.1016/j.cej.2014.06.012

    Article  CAS  Google Scholar 

  30. Song N, Zhu Y, Chen SH, Wang C, Lu XF (2018) Fe3C-nitrogen-doped carbon nanofibers as highly efficient biocatalyst with oxidase-mimicking activity for colorimetric sensing. ACS Sustain Chem Eng 6:16766–16776. https://doi.org/10.1021/acssuschemeng.8b04036

    Article  CAS  Google Scholar 

  31. Zhong MX, Ma FQ, Zhu Y, Wang C, Lu XF (2018) Dual responsive enzyme mimicking of ternary polyaniline–MnO2–Pd nanowires and its application in colorimetric biosensing. ACS Sustain Chem Eng 2018:16482–16492. https://doi.org/10.1021/acssuschemeng.8b03567

    Article  CAS  Google Scholar 

  32. Cai S, Han Q, Qi C, Lian Z, Jia X, Yang R et al (2016) Pt74Ag26 nanoparticle-decorated ultrathin MoS2 nanosheets as novel peroxidase mimics for highly selective colorimetric detection of H2O2 and glucose. Nanoscale 8:3685–3693. https://doi.org/10.1039/c5nr08038j

    Article  CAS  PubMed  Google Scholar 

  33. He W, Liu Y, Yuan J, Yin JJ, Wu X, Hu X et al (2011) Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials 32:1139–1147. https://doi.org/10.1016/j.biomaterials.2010.09.040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA23050104), Natured Science Foundation of China (Grant No. 41776090), Key Research and Development Program of Shandong Province (Grant Nos. 2018GHY115038 and 2018GGX104021) and AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Wang or Dun Zhang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 670 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Wang, Y. & Zhang, D. Peroxidase-like activity of vanadium tetrasulfide submicrospheres and its application to the colorimetric detection of hydrogen peroxide and L-cysteine. Microchim Acta 186, 784 (2019). https://doi.org/10.1007/s00604-019-3942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3942-3

Keywords

Navigation