Skip to main content
Log in

Target-induced in-situ formation of fluorescent DNA-templated copper nanoparticles by a catalytic hairpin assembly: application to the determination of DNA and thrombin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorometric method is described for nucleic acid signal amplification through target-induced catalytic hairpin assembly with DNA-templated copper nanoparticles (Cu NPs). The toehold-mediated self-assembly of three metastable hairpins is triggered in presence of target DNA. This leads to the formation of a three-way junction structure with protruding mononucleotides at the 3′ terminus. The target DNA is released from the formed branched structure and triggers another assembly cycle. As a result, plenty of branched DNA becomes available for the synthesis of Cu NPs which have fluorescence excitation/emission maxima at 340/590 nm. At the same time, the branched structure protects the Cu NPs from digestion by exonuclease III. The unreacted hairpins are digested by exonuclease III, and this warrants a lower background signal. The method can detect ssDNA (24 nt) at low concentration (44 pM) and is selective over single-nucleotide polymorphism. On addition of an aptamer, the strategy can also be applied to the quantitation of thrombin at levels as low as 0.9 nM.

Schematic representation of target-induced catalytic hairpin assembly to form branched DNA template for the in situ synthesis of fluorescent Cu nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3

Similar content being viewed by others

References

  1. Li J, Green AA, Yan H, Fan C (2017) Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat Chem 9(11):1056–1067. https://doi.org/10.1038/nchem.2852

    Article  CAS  PubMed  Google Scholar 

  2. Chen YJ, Groves B, Muscat RA, Seelig G (2015) DNA nanotechnology from the test tube to the cell. Nat Nanotechnol 10(9):748–760. https://doi.org/10.1038/nnano.2015.195

    Article  CAS  PubMed  Google Scholar 

  3. Yang D, Tang Y, Miao P (2017) Hybridization chain reaction directed DNA superstructures assembly for biosensing applications. TrAC Trends Anal Chem 94:1–13. https://doi.org/10.1016/j.trac.2017.06.011

    Article  CAS  Google Scholar 

  4. Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46(14):4281–4298. https://doi.org/10.1039/c7cs00055c

    Article  CAS  PubMed  Google Scholar 

  5. Yang F, Zuo X, Fan C, Zhang X-E (2018) Biomacromolecular nanostructures-based interfacial engineering: from precise assembly to precision biosensing. Natl Sci Rev 5(5):740–755. https://doi.org/10.1093/nsr/nwx134

    Article  CAS  Google Scholar 

  6. Chen Z, Liu C, Cao F, Ren J, Qu X (2018) DNA metallization: principles, methods, structures, and applications. Chem Soc Rev 47(11):4017–4072. https://doi.org/10.1039/c8cs00011e

    Article  CAS  PubMed  Google Scholar 

  7. Chen Y, Phipps ML, Werner JH, Chakraborty S, Martinez JS (2018) DNA Templated metal Nanoclusters: from emergent properties to unique applications. Acc Chem Res 51(11):2756–2763. https://doi.org/10.1021/acs.accounts.8b00366

    Article  CAS  PubMed  Google Scholar 

  8. New SY, Lee ST, Su XD (2016) DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale 8(41):17729–17746. https://doi.org/10.1039/c6nr05872h

    Article  CAS  PubMed  Google Scholar 

  9. Lee JB, Roh YH, Um SH, Funabashi H, Cheng W, Cha JJ, Kiatwuthinon P, Muller DA, Luo D (2009) Multifunctional nanoarchitectures from DNA-based ABC monomers. Nat Nanotechnol 4(7):430–436. https://doi.org/10.1038/nnano.2009.93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng HM, Zhang X, Lv Y, Zhao Z, Wang NN, Fu T, Fan H, Liang H, Qiu L, Zhu G, Tan W (2014) DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano 8(6):6171–6181. https://doi.org/10.1021/nn5015962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schultz D, Gardner K, Oemrawsingh SS, Markesevic N, Olsson K, Debord M, Bouwmeester D, Gwinn E (2013) Evidence for rod-shaped DNA-stabilized silver nanocluster emitters. Adv Mater 25(20):2797–2803. https://doi.org/10.1002/adma.201204624

    Article  CAS  PubMed  Google Scholar 

  12. Park J, Song J, Park J, Park N, Kim S (2014) Branched DNA-based synthesis of fluorescent silver Nanocluster. Bull Kor Chem Soc 35(4):1105–1109. https://doi.org/10.5012/bkcs.2014.35.4.1105

    Article  CAS  Google Scholar 

  13. Guo W, Orbach R, Mironi-Harpaz I, Seliktar D, Willner I (2013) Fluorescent DNA hydrogels composed of nucleic acid-stabilized silver nanoclusters. Small 9(22):3748–3752. https://doi.org/10.1002/smll.201300055

    Article  CAS  PubMed  Google Scholar 

  14. Yang L, Yao C, Li F, Dong Y, Zhang Z, Yang D (2018) Synthesis of branched DNA Scaffolded Super-Nanoclusters with enhanced antibacterial performance. Small 14(16):e1800185. https://doi.org/10.1002/smll.201800185

    Article  CAS  PubMed  Google Scholar 

  15. Qing Z, He X, Huang J, Wang K, Zou Z, Qing T, Mao Z, Shi H, He D (2014) Target-catalyzed dynamic assembly-based pyrene excimer switching for enzyme-free nucleic acid amplified detection. Anal Chem 86(10):4934–4939. https://doi.org/10.1021/ac500834g

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Li C, Liu X, Zhou X, Wang F (2018) Construction of an enzyme-free concatenated DNA circuit for signal amplification and intracellular imaging. Chem Sci 9(26):5842–5849. https://doi.org/10.1039/c8sc01981a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chen L, Sha L, Qiu Y, Wang G, Jiang H, Zhang X (2015) An amplified electrochemical aptasensor based on hybridization chain reactions and catalysis of silver nanoclusters. Nanoscale 7(7):3300–3308. https://doi.org/10.1039/c4nr06664b

    Article  CAS  PubMed  Google Scholar 

  18. Yang C, Shi K, Dou B, Xiang Y, Chai Y, Yuan R (2015) In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive and label-free electrochemical detection of microRNA. ACS Appl Mater Interfaces 7(2):1188–1193. https://doi.org/10.1021/am506933r

    Article  CAS  PubMed  Google Scholar 

  19. Orbach R, Guo W, Wang F, Lioubashevski O, Willner I (2013) Self-assembly of luminescent Ag nanocluster-functionalized nanowires. Langmuir 29(42):13066–13071. https://doi.org/10.1021/la402888b

    Article  CAS  PubMed  Google Scholar 

  20. Liu R, Wang C, Hu J, Su Y, Lv Y (2018) DNA-templated copper nanoparticles: versatile platform for label-free bioassays. TrAC Trends Anal Chem 105:436–452. https://doi.org/10.1016/j.trac.2018.06.003

    Article  CAS  Google Scholar 

  21. Han Y, Zhang F, Gong H, Cai C (2018) Double G-quadruplexes in a copper nanoparticle based fluorescent probe for determination of HIV genes. Microchim Acta 186(1):30. https://doi.org/10.1007/s00604-018-3119-5

    Article  CAS  Google Scholar 

  22. Kim S, Kim JH, Kwon WY, Hwang SH, Cha BS, Kim JM, Oh SS, Park KS (2019) Synthesis of DNA-templated copper nanoparticles with enhanced fluorescence stability for cellular imaging. Microchim Acta 186(7):479–475. https://doi.org/10.1007/s00604-019-3620-5

    Article  CAS  Google Scholar 

  23. Zhang Y, Chen Z, Tao Y, Wang Z, Ren J, Qu X (2015) Hybridization chain reaction engineered dsDNA for cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs. Chem Commun (Camb) 51(57):11496–11499. https://doi.org/10.1039/c5cc03144c

    Article  CAS  Google Scholar 

  24. Song C, Yang X, Wang K, Wang Q, Huang J, Liu J, Liu W, Liu P (2014) Label-free and non-enzymatic detection of DNA based on hybridization chain reaction amplification and dsDNA-templated copper nanoparticles. Anal Chim Acta 827 (0):74–79. doi:https://doi.org/10.1016/j.aca.2014.04.006

    Article  CAS  PubMed  Google Scholar 

  25. Chen J, Zhou S (2016) Label-free DNA Y junction for bisphenol a monitoring using exonuclease III-based signal protection strategy. Biosens Bioelectron 77:277–283. https://doi.org/10.1016/j.bios.2015.09.042

    Article  CAS  PubMed  Google Scholar 

  26. Cao Q, Li J, Wang E (2019) Recent advances in the synthesis and application of copper nanomaterials based on various DNA scaffolds. Biosens Bioelectron 132:333–342. https://doi.org/10.1016/j.bios.2019.01.046

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Y-e S, Yang X, Xiong Y, Li Y, Chen B, Lai W-F, Rogach AL (2018) Water-soluble biocompatible copolymer Hypromellose grafted chitosan able to load exogenous agents and copper Nanoclusters with aggregation-induced emission. Adv Funct Mater 28(34):1802848. https://doi.org/10.1002/adfm.201802848

    Article  CAS  Google Scholar 

  28. Wang B, Thachuk C, Ellington AD, Winfree E, Soloveichik D (2018) Effective design principles for leakless strand displacement systems. Proc Natl Acad Sci U S A 115(52):E12182–E12191. https://doi.org/10.1073/pnas.1806859115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang DY, Seelig G (2011) Dynamic DNA nanotechnology using strand-displacement reactions. Nat Chem 3(2):103–113

    Article  CAS  PubMed  Google Scholar 

  30. Xu N, Wang Q, Lei J, Liu L, Ju H (2015) Label-free triple-helix aptamer as sensing platform for “signal-on” fluorescent detection of thrombin. Talanta 132:387–391. https://doi.org/10.1016/j.talanta.2014.09.031

    Article  CAS  PubMed  Google Scholar 

  31. Li L, Liang Y, Zhao Y, Chen Z (2018) Target binding and DNA hybridization-induced gold nanoparticle aggregation for colorimetric detection of thrombin. Sensors Actuators B Chem 262:733–738. https://doi.org/10.1016/j.snb.2018.02.061

    Article  CAS  Google Scholar 

  32. Chung S, Moon J-M, Choi J, Hwang H, Shim Y-B (2018) Magnetic force assisted electrochemical sensor for the detection of thrombin with aptamer-antibody sandwich formation. Biosens Bioelectron 117:480–486. https://doi.org/10.1016/j.bios.2018.06.068

    Article  CAS  PubMed  Google Scholar 

  33. Sui N, Wang L, Xie F, Liu F, Xiao H, Liu M, Yu WW (2016) Ultrasensitive aptamer-based thrombin assay based on metal enhanced fluorescence resonance energy transfer. Microchim Acta 183(5):1563–1570. https://doi.org/10.1007/s00604-016-1774-y

    Article  CAS  Google Scholar 

  34. Khonsari YN, Sun S (2018) Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Microchim Acta 185(9):430–410. https://doi.org/10.1007/s00604-018-2942-z

    Article  CAS  Google Scholar 

  35. Wang L, Yang W, Li T, Li D, Cui Z, Wang Y, Ji S, Song Q, Shu C, Ding L (2017) Colorimetric determination of thrombin by exploiting a triple enzyme-mimetic activity and dual-aptamer strategy. Microchim Acta 184(9):3145–3151. https://doi.org/10.1007/s00604-017-2327-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (31801636), National Key Research and Development Program of China (2017YFC1600603),, and Shanghai Sailing Program (Grant No. 18YF1417300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, T., Peng, Y., Yuan, M. et al. Target-induced in-situ formation of fluorescent DNA-templated copper nanoparticles by a catalytic hairpin assembly: application to the determination of DNA and thrombin. Microchim Acta 186, 760 (2019). https://doi.org/10.1007/s00604-019-3927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3927-2

Keywords

Navigation