Skip to main content
Log in

Impedimetric aptasensor for Pseudomonas aeruginosa by using a glassy carbon electrode modified with silver nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An aptasensor is described for the ultrasensitive detection of Pseudomonas aeruginosa (P. aeruginosa). A glassy carbon electrode (GCE) was first modified by electrodeposition of silver nanoparticles (AgNPs). Immobilization of NH2-aptamer was covalently attached to the AgNP/GCE surface. The morphology, distribution and size of the sensor were characterized by field emission scanning electron microscopy. Cyclic voltammetry and electrical impedance spectroscopy were used to study conductivity of the aptasensor and the electrochemical properties. Detection of P. aeruginosa was carried out by evaluation of the charge transfer resistance after and before the adding of P.aeruginosa and by using the hexacyanoferrate redox system as an electrochemical probe. The impedance increases on going from 102 to 107 CFU·mL−1 concentrations of P. aeruginosa, and the detection limit is 33 CFU·mL−1 (for S/N = 3). The assay was successfully applied for the determination of P. aeruginosa in spiker serum samples.

Schematic representation of an impedimetric assay for Pseudomonas aeruginosa by using a [Fe(CN)6]3−/4- probe based on immobilization of amino-modified aptamer onto a glassy carbon electrode (GCE) modified with silver nanoparticles (AgNPs): Incubation with P. aeruginosa leads to an increase of the charge-transfer resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Krithiga N, Viswanath KB, Vasantha VS, Jayachitra A (2016) Specific and selective electrochemical immunoassay for Pseudomonas aeruginosa based on pectin–gold nano composite. Biosens Bioelectron 79:121–129

    Article  CAS  Google Scholar 

  2. Sismaet HJ, Pinto AJ, Goluch ED (2017) Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates. Biosens Bioelectron 97:65–69

    Article  CAS  Google Scholar 

  3. Wiehlmann L, Cramer N, Ulrich J et al (2012) Effective prevention of Pseudomonas aeruginosa cross-infection at a cystic fibrosis centre–results of a 10-year prospective study. Int J Med Microbiol 302:69–77

    Article  Google Scholar 

  4. Kingsford NM, Raadsma HW (1995) Detection of Pseudomonas aeruginosa from ovine fleece washings by PCR amplification of 16S ribosomal RNA. Vet Microbiol 47:61–70

    Article  CAS  Google Scholar 

  5. Kodaka H, Iwata M, Yumoto S, Kashitani F (2003) Evaluation of a new agar medium containing cetrimide, kanamycin and nalidixic acid for isolation and enhancement of pigment production of Pseudomonas aeruginosa in clinical samples. J Basic Microbiol An Int J Biochem Physiol Genet Morphol Ecol Microorg 43:407–413

    CAS  Google Scholar 

  6. Shibuya N, Kohno S, Shigeno Y et al (1987) Rapid diagnosis of respiratory pseudomonas infections--indirect immunofluorescent-staining of sputum with monoclonal antibody to Pseudomonas aeruginosa. Kansenshogaku Zasshi 61:1406

    Article  CAS  Google Scholar 

  7. Xu Y, Theobald V, Sung C et al (2008) Validation of a HLA-A2 tetramer flow cytometric method, IFNgamma real time RT-PCR, and IFNgamma ELISPOT for detection of immunologic response to gp100 and MelanA/MART-1 in melanoma patients. J Transl Med 6:61

    Article  CAS  Google Scholar 

  8. Imperi F, Ciccosanti F, Perdomo AB et al (2009) Analysis of the periplasmic proteome of Pseudomonas aeruginosa, a metabolically versatile opportunistic pathogen. Proteomics 9:1901–1915

    Article  CAS  Google Scholar 

  9. Webster TA, Sismaet HJ, Conte JL, Goluch ED (2014) Electrochemical detection of Pseudomonas aeruginosa in human fluid samples via pyocyanin. Biosens Bioelectron 60:265–270

    Article  CAS  Google Scholar 

  10. Li F, Zhang H, Wang Z et al (2014) Aptamers facilitating amplified detection of biomolecules. Anal Chem 87:274–292

    Article  Google Scholar 

  11. Labib M, Zamay AS, Kolovskaya OS et al (2012) Aptamer-based impedimetric sensor for bacterial typing. Anal Chem 84:8114–8117

    Article  CAS  Google Scholar 

  12. Valencia-Burton M, Broude NE (2007) Visualization of RNA Using Fluorescence Complementation Triggered by Aptamer-Protein Interactions (RFAP) in Live Bacterial Cells. Curr Protoc cell Biol 37:11–17

    Article  Google Scholar 

  13. Yang C, Wang Q, Xiang Y, Yuan R, Chai Y (2014) Target-induced strand release and thionine-decorated gold nanoparticle amplification labels for sensitive electrochemical aptamer-based sensing of small molecules. Sensors Actuators B Chem 197:149–154

    Article  CAS  Google Scholar 

  14. Yang M, Javadi A, Li H, Gong S (2010) Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. Biosens Bioelectron 26:560–565

    Article  CAS  Google Scholar 

  15. Zhang H, Li X, Chen G (2009) Ionic liquid-facilitated synthesis and catalytic activity of highly dispersed Ag nanoclusters supported on TiO2. J Mater Chem 19:8223–8231

    Article  CAS  Google Scholar 

  16. Salimi A, Kavosi B, Fathi F, Hallaj R (2013) Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes electrode: application as cancer biomarker for prostatebiopsies. Biosens Bioelectron 42:439–446

    Article  CAS  Google Scholar 

  17. Shahdost-fard F, Salimi A, Sharifi E, Korani A (2013) Fabrication of a highly sensitive adenosine aptasensor based on covalent attachment of aptamer onto chitosan–carbon nanotubes–ionic liquid nanocomposite. Biosens Bioelectron 48:100–107

    Article  CAS  Google Scholar 

  18. Yu L, Shi Y, Zhao Z, Yin H, Wei Y, Liu J, Kang W, Jiang T, Wang A (2011) Ultrasmall silver nanoparticles supported on silica and their catalytic performances for carbon monoxide oxidation. Catal Commun 12:616–620

    Article  CAS  Google Scholar 

  19. Roushani M, Shahdost-fard F (2015) A novel ultrasensitive aptasensor based on silver nanoparticles measured via enhanced voltammetric response of electrochemical reduction of riboflavin as redox probe for cocaine detection. Sensors Actuators B Chem 207:764–771

    Article  CAS  Google Scholar 

  20. Zanella R, Giorgio S, Shin CH, Henry CR, Louis C (2004) Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J Catal 222:357–367 16

    Article  CAS  Google Scholar 

  21. Moreau F, Bond GC, Taylor AO (2005) Gold on titania catalysts for the oxidation of carbon monoxide: control of pH during preparation with various gold contents. J Catal 231:105–114

    Article  CAS  Google Scholar 

  22. Roushani M, Shahdost-fard F (2018) A glassy carbon electrode with electrodeposited silver nanoparticles for aptamer based voltammetric determination of trinitrotoluene using riboflavin as a redox probe. Microchim Acta 185:558

    Article  Google Scholar 

  23. Zhong Z, Gao X, Gao R, Jia L (2018) Selective capture and sensitive fluorometric determination of Pseudomonas aeruginosa by using aptamer modified magnetic nanoparticles. Microchim Acta 185(8):377

    Article  Google Scholar 

  24. Labib M, Zamay AS, Kolovskaya OS, Reshetneva IT, Zamay GS, Kibbee RJ, Sattar SA, Zamay TN, Berezovski MV (2012) Aptamer-based viability impedimetric sensor for bacteria. Anal Chem 84:8966–8969

    Article  CAS  Google Scholar 

  25. Cai W-Y, Xu Q, Zhao X-N et al (2006) Porous gold-Nanoparticle− CaCO3 hybrid material: preparation, characterization, and application for horseradish Peroxidase assembly and direct electrochemistry. Chem Mater 18:279–284

    Article  CAS  Google Scholar 

  26. Baldock BL, Hutchison JE (2016) UV–Visible Spectroscopy-Based Quantification of Unlabeled DNA Bound to Gold Nanoparticles. Anal Chem 88:12072–12080

    Article  CAS  Google Scholar 

  27. Shahdost-fard F, Roushani M (2016) An impedimetric aptasensor based on water soluble cadmium telluride (CdTe) quantum dots (QDs) for detection of ibuprofen. J Electroanal Chem 763:18–24

    Article  CAS  Google Scholar 

  28. Wu Z, He D, Cui B, Jin Z (2018) A bimodal (SERS and colorimetric) aptasensor for the detection of Pseudomonas aeruginosa. Microchim Acta 11:185–528

    Google Scholar 

  29. Jia F, Xu L, Yan W, Wu W, Yu Q, Tian X, Dai R, Li X (2017) A magnetic relaxation switch aptasensor for the rapid detection of Pseudomonas aeruginosa using superparamagnetic nanoparticles. Microchim Acta 184:1539–1545

    Article  CAS  Google Scholar 

  30. Kaur G, Raj T, Kaur N, Singh N (2015) Pyrimidine-based functional fluorescent organic nanoparticle probe for detection of Pseudomonas aeruginosa. Org Biomol Chem 13:4673–4679

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study has been supported by the Ilam University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Roushani.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 66.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roushani, M., Sarabaegi, M. & Pourahmad, F. Impedimetric aptasensor for Pseudomonas aeruginosa by using a glassy carbon electrode modified with silver nanoparticles. Microchim Acta 186, 725 (2019). https://doi.org/10.1007/s00604-019-3858-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3858-y

Keywords

Navigation