Skip to main content
Log in

Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive amperometric method is reported for the determination of lactate. A platinum electrode was modified with a composite prepared from reduced graphene oxide (rGO), carbon nanotubes (CNTs) and gold nanoparticles. The composite was synthesized by the in-situ reduction of gold(III) ions on the GO-CNT hybrid. Triple composite components showed synergistic effects on the enzyme loading, electrocatalytic activity and electron transfer between receptor and electrode surface. The amperometric lactate sensor was obtained by immobilization of lactate oxidase (LOx) on the modified electrode. LOx catalyzes the conversion of lactate into pyruvate and hydrogen peroxide. The generated hydrogen peroxide is simultaneously involved in the oxidation reaction, which is associated with the electron production. These electrons act as amperometric signal generators. At the low potential of 0.2 V, the nanobiosensor shows a relatively wide linear analytical range (i.e., 0.05–100 mM of lactate) with high electrochemical sensitivity (35.3 μA mM−1 cm−2) and limit of detection of 2.3 μM. The sensor is stable, repeatable and reproducible. It is a highly sensitive tool for the detection of lactate in biological samples under both normoxic and hypoxic conditions.

Schematic representation of an electrochemical biosensor for sensitive detection of lactate in biological and food samples based on reduced graphene oxide-carbon nanotube-gold nanocomposite, as a surface modifier, and lactate oxidase, as a bioreceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Barar J, Omidi Y (2013) Dysregulated pH in tumor microenvironment checkmates cancer therapy. BioImpacts. 3(4):149–162. https://doi.org/10.5681/bi.2013.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Katz A, Sahlin K (1987) Effect of decreased oxygen availability on NADH and lactate contents in human skeletal muscle during exercise. Acta Physiol Scand 131(1):119–127. https://doi.org/10.1111/j.1748-1716.1987.tb08213.x

    Article  CAS  PubMed  Google Scholar 

  3. Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL et al (2007) The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev 21(9):1037–1049. https://doi.org/10.1101/gad.1529107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Annibaldi A, Widmann C (2010) Glucose metabolism in cancer cells. Curr Opin Clin Nutr Metab Care 13(4):466–470. https://doi.org/10.1097/MCO.0b013e32833a5577

    Article  CAS  PubMed  Google Scholar 

  5. Bartrons R, Caro J (2007) Hypoxia, glucose metabolism and the Warburg’s effect. J Bioenerg Biomembr 39(3):223–229. https://doi.org/10.1007/s10863-007-9080-3

    Article  CAS  PubMed  Google Scholar 

  6. Goodwin ML, Gladden LB, Nijsten MW, Jones KB (2015) Lactate and cancer: revisiting the Warburg effect in an era of lactate shuttling. Frontiers Nutr 1:1–3. https://doi.org/10.3389/fnut.2014.00027

    Article  CAS  Google Scholar 

  7. Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54. https://doi.org/10.1016/j.bbrep.2015.11.010

    Article  PubMed  Google Scholar 

  8. Pal R, Parker D, Costello LC (2009) A europium luminescence assay of lactate and citrate in biological fluids. Org Biomol Chem 7(8):1525–1528. https://doi.org/10.1039/b901251f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sartain FK, Yang X, Lowe CR (2006) Holographic lactate sensor. Anal Chem 78(16):5664–5670. https://doi.org/10.1021/ac060416g

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi S, Kurosawa S (2008) Anzai Ji. Electrochemical determination of L-lactate using Phenylboronic acid monolayer-modified electrodes. Electroanalysis. 20(7):816–818. https://doi.org/10.1002/elan.200704097

    Article  CAS  Google Scholar 

  11. Pereira AC, Aguiar MR, Kisner A, Macedo DV, Kubota LT (2007) Amperometric biosensor for lactate based on lactate dehydrogenase and Meldola blue coimmobilized on multi-wall carbon-nanotube. Sensors Actuators B Chem 124(1):269–276. https://doi.org/10.1016/j.snb.2006.12.042

    Article  CAS  Google Scholar 

  12. Rahman M, Shiddiky MJ, Rahman MA, Shim Y-B (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384(1):159–165. https://doi.org/10.1016/j.ab.2008.09.030

    Article  CAS  PubMed  Google Scholar 

  13. Sirkar K, Revzin A, Pishko MV (2000) Glucose and lactate biosensors based on redox polymer/oxidoreductase nanocomposite thin films. Anal Chem 72(13):2930–2936. https://doi.org/10.1021/ac991041k

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y, Bao Y, Lou L, Li J, Du W, Zhu Z et al (2010) A novel L-lactate sensor based on enzyme electrode modified with ZnO nanoparticles and multiwall carbon nanotubes. J Electroanal Chem:33–37. https://doi.org/10.1016/j.jelechem.2011.06.024

    Article  CAS  Google Scholar 

  15. Lei Y, Luo N, Yan X, Zhao Y, Zhang G, Zhang Y (2012) A highly sensitive electrochemical biosensor based on zinc oxide nanotetrapods for L-lactic acid detection. Nanoscale. 4(11):3438–3443. https://doi.org/10.1039/C2NR30334E

    Article  CAS  PubMed  Google Scholar 

  16. Ibupoto ZH, Shah SMUA, Khun K, Willander M (2012) Electrochemical L-lactic acid sensor based on immobilized ZnO nanorods with lactate oxidase. Sensors. 12(3):2456–2466. https://doi.org/10.3390/s120302456

    Article  CAS  PubMed  Google Scholar 

  17. Zhao Y, Li W, Pan L, Zhai D, Wang Y, Li L et al (2016) ZnO-nanorods/graphene heterostructure: a direct electron transfer glucose biosensor. Sci Rep 6:32327. https://doi.org/10.1038/srep32327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang W, Li X, Zou R, Wu H, Shi H, Yu S et al (2015) Multifunctional glucose biosensors from Fe3O4 nanoparticles modified chitosan/graphene nanocomposites. Sci Rep 5:11129. https://doi.org/10.1038/srep32327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Song J, Xu L, Xing R, Li Q, Zhou C, Liu D et al (2014) Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid. Sci Rep 4:7515. https://doi.org/10.1038/srep07515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rakhi R, Nayak P, Xia C, Alshareef HN (2016) Novel amperometric glucose biosensor based on MXene nanocomposite. Sci Rep 6:36422. https://doi.org/10.1038/srep32327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hossain MF, Park JY (2016) Plain to point network reduced graphene oxide-activated carbon composites decorated with platinum nanoparticles for urine glucose detection. Sci Rep 6:21009. https://doi.org/10.1038/srep21009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis. 17(1):7–14. https://doi.org/10.1002/elan.200403113

    Article  CAS  Google Scholar 

  23. Nikoleli G-P, Karapetis S, Bratakou S, Nikolelis DP, Tzamtzis N, Psychoyios VN (2016) Graphene-based electrochemical biosensors: new trends and applications. Intelligent Nanomat 2:427–448. https://doi.org/10.1002/9781119242628.ch13

    Article  CAS  Google Scholar 

  24. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A et al (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  25. Hwa K-Y, Subramani B (2014) Synthesis of zinc oxide nanoparticles on graphene–carbon nanotube hybrid for glucose biosensor applications. Biosens Bioelectron 62:127–133. https://doi.org/10.1016/j.bios.2014.06.023

    Article  CAS  PubMed  Google Scholar 

  26. Perumal M, Nesakumar N, Velayutham D, Madasamy K, Murugavel K, Kulandaisamy AJ et al (2018) A novel electrochemical sensor based on a nickel-metal organic framework for efficient electrocatalytic oxidation and rapid detection of lactate analysis. New J Chem 42:11839–11846. https://doi.org/10.1039/c8nj02118j

    Article  CAS  Google Scholar 

  27. Abrar MA, Dong Y, Lee PK, Kim WS (2016) Bendable electro-chemical lactate sensor printed with silver nano-particles. Sci Rep 6:30565. https://doi.org/10.1038/srep30565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hernández-Ibáñez N, García-Cruz L, Montiel V, Foster CW, Banks CE, Iniesta J (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174. https://doi.org/10.1016/j.bios.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  29. Goran JM, Lyon JL, Stevenson KJ (2011) Amperometric detection of l-lactate using nitrogen-doped carbon nanotubes modified with lactate oxidase. Anal Chem 83(21):8123–8129. https://doi.org/10.1021/ac2016272

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This article is a part of a Ph.D. thesis, written by Ms. Shabnam Hashemzadeh, approved at the School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran-Iran (Registration No: M 360) in collaboration with the Research Center for Pharmaceutical Nanotechnology (RCPN) at Tabriz University of Medical Sciences, Tabriz-Iran. This study was financially supported by and technically conducted at the RCPN (Grant No: 97005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yadollah Omidi or Hashem Rafii-Tabar.

Ethics declarations

Conflict of interests

The authors declare no conflict of interests.

Ethical issues

This study was ethically approved by Shahid Beheshti University of Medical Sciences (Approval ID: IR.SBMU.MSP.REC.1396.753).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 288 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashemzadeh, S., Omidi, Y. & Rafii-Tabar, H. Amperometric lactate nanobiosensor based on reduced graphene oxide, carbon nanotube and gold nanoparticle nanocomposite. Microchim Acta 186, 680 (2019). https://doi.org/10.1007/s00604-019-3791-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3791-0

Keywords

Navigation