Skip to main content
Log in

Fluorometric determination of nitrite through its catalytic effect on the oxidation of iodide and subsequent etching of gold nanoclusters by free iodine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method for sensitive detection of nitrite is presented. It is found that the red fluorescence of gold nanoclusters (with excitation/emission maxima at 365/635 nm) is quenched by traces of iodine via etching. Free iodide is formed by oxidation of iodide by bromate anion under the catalytic effect of nitrite. This catalytic process provides a sensitive means for nitrite detection. Under the optimal conditions, fluorescence linearly dropos in the 10 nM to 0.8 μM nitrite concentration range. The limit of detection is 1.1 nM. This is a few orders of magnitude lower than the maximum concentration allowed by authorities.

Schematic representation of a method for detection of nitrite via a redox reaction. Iodine was produced in the reaction and subsequently quenched the fluorescence from gold nanoclusters by etching their metallic cores, and a sensitive assay for nitrite down to 1.1 nM was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lundberg JO, Gladwin MT, Ahluwalia A, Benjamin N, Bryan NS, Butler A, Cabrales P, Fago A, Feelisch M, Ford PC, Freeman BA, Frenneaux M, Friedman J, Kelm M, Kevil CG, Kim-Shapiro DB, Kozlov AV, Lancaster JR, Lefer DJ, McColl K, McCurry K, Patel RP, Petersson J, Rassaf T, Reutov VP, Richter-Addo GB, Schechter A, Shiva S, Tsuchiya K, van Faassen EE, Webb AJ, Zuckerbraun BS, Zweier JL, Weitzberg E (2009) Nitrate and nitrite in biology, nutrition and therapeutics. Nat Chem Biol 5:865–869. https://doi.org/10.1038/nchembio.260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cammack R, Joannou CL, Cui X, Martinez CT, Maraj SR, Hughes MN (1999) Nitrite and nitrosyl compounds in food preservation. Biochim Biophys Acta 1411:475–488. https://doi.org/10.1016/S0005-2728(99)00033-X

    Article  CAS  PubMed  Google Scholar 

  3. Huang S, Li L, Mei L, Zhou J, Guo F, Wang A, Feng J (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797. https://doi.org/10.1007/s00604-015-1717-z

    Article  CAS  Google Scholar 

  4. Wang Q, Huang H, Ning B, Li M, He L (2015) A highly sensitive and selective spectrofluorimetric method for the determination of nitrite in food products. Food Anal Methods 9:1293–1300. https://doi.org/10.1007/s12161-015-0306-4

    Article  Google Scholar 

  5. Bharath G, Madhu R, Chen S, Veeramani V, Mangalaraja D, Ponpandian N (2015) Solvent-free mechanochemical synthesis of graphene oxide and Fe3O4–reduced grapheneoxide nanocomposites for sensitive detection of nitrite. J Mater Chem A 3:15529–15539. https://doi.org/10.1039/c5ta03179f

    Article  CAS  Google Scholar 

  6. Kumar A, Gonc JM, Sukeri A, Araki K, Bertotti M (2018) Correlating surface growth of nanoporous gold with electrodeposition parameters to optimize amperometric sensing of nitrite. Sensors Actuators B Chem 263:237–247. https://doi.org/10.1016/j.snb.2018.02.125

    Article  CAS  Google Scholar 

  7. Helaleh MI, Korenaga T (2000) Ion chromatographic method for simultaneous determination of nitrate and nitrite in human saliva. J Chromatogr B 744:433–437. https://doi.org/10.1016/S0378-4347(00)00264-4

    Article  CAS  Google Scholar 

  8. Shariati-Rad M, Irandoust M, Niazi F (2015) A sensitive spectrofluorimetric method for the determination of nitrite in agricultural samples. Food Anal Methods 8:1691–1698. https://doi.org/10.1007/s12161-014-0045-y

    Article  Google Scholar 

  9. Zhang H, Kang S, Wang G, Zhang Y, Zhao H (2016) Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodots as fluorophores. ACS Sens 1:875–881. https://doi.org/10.1021/acssensors.6b00269

    Article  CAS  Google Scholar 

  10. Manoj D, Saravanan R, Santhanalakshmi J, Agarwal S, Gupta VK, Boukherroub R (2018) Towards green synthesis of monodisperse cu nanoparticles: an efficient and high sensitive electrochemical nitrite sensor. Sensors Actuators B Chem 266:873–882. https://doi.org/10.1016/j.snb.2018.03.141

    Article  CAS  Google Scholar 

  11. Chen L, Wang C, Yuan Z, Chang H (2015) Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal Chem 87:216–229. https://doi.org/10.1021/ac503636j

    Article  CAS  PubMed  Google Scholar 

  12. Lan G, Huang C, Chang H (2010) Silver nanoclusters as fluorescent probes for selective and sensitive detection of copper ions. Chem Commun 46:1257–1259. https://doi.org/10.1039/b920783j

    Article  CAS  Google Scholar 

  13. Cao D, Fan J, Qiu J, Tu Y, Yan J (2013) Masking method for improving selectivity of gold nanoclusters in fluorescence determination of mercury and copper ions. Biosens Bioelectron 42:47–50. https://doi.org/10.1016/j.bios.2012.10.084

    Article  CAS  PubMed  Google Scholar 

  14. Tao Y, Li M, Ren J, Qu X (2016) Metal nanoclusters: novel probes for diagnostic and therapeutic applications. Chem Soc Rev 47:8636–8663. https://doi.org/10.1039/c5cs00607d

    Article  CAS  Google Scholar 

  15. Luo M, Di J, Li L, Tu Y, Yan J (2018) Copper ion detection with improved sensitivity through catalytic quenching of gold nanocluster fluorescence. Talanta 187:231–236. https://doi.org/10.1016/j.talanta.2018.05.047

    Article  CAS  PubMed  Google Scholar 

  16. Li R, Xu P, Tu Y, Yan J (2018) Albumin-stabilized gold nanoclusters as viable fluorescent probes in non-titrimetric iodometry for the detection of oxidizing analytes Microchim. Acta 143:497–502. https://doi.org/10.1007/s00604-015-1661-y

    Article  CAS  Google Scholar 

  17. Yang Y, Han A, Li R, Fang G, Liu J, Wang S (2017) Synthesis of highly fluorescent gold nanoclusters and their use in sensitive analysis of metal ions. Analyst 142:4486–4493. https://doi.org/10.1039/c7an01348e

    Article  CAS  PubMed  Google Scholar 

  18. Kermani HA, Hosseini M, Miti A, Dadmehr M, Zuccheri G, Hosseinkhani S, Ganjali MR (2018) A colorimetric assay of DNA methyltransferase activity based on peroxidase mimicking of DNA template Ag/Pt bimetallic nanoclusters. Anal Bioanal Chem 410:4943–4952. https://doi.org/10.1007/s00216-018-1143-2

    Article  CAS  PubMed  Google Scholar 

  19. Xu H, Zhu H, Sun M, Yu H, Li H, Ma F, Wang S (2014) Graphene oxide supported gold nanoclusters for the sensitive and selective detection of nitrite ions. Analyst 140:1678–1685. https://doi.org/10.1039/c4an02181a

    Article  Google Scholar 

  20. Xiang G, Wang Y, Zhang H, Fan H, Fan L, He L (2018) Carbon dots based dual-emission silica nanoparticles as ratiometric fluorescent probe for nitrite determination in food samples. Food Chem 260:13–18. https://doi.org/10.1016/j.food.chem.2018.03.150

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Tan X, Xue J, Li G, Shi L, Yang H, Liu L, Zhou B, Xiao X (2011) Determination of trace formaldehyde in blood plasma by resonance fluorescence technology. Anal Chim Acta 690:234–239. https://doi.org/10.1016/j.aca.2011.02.030

    Article  CAS  PubMed  Google Scholar 

  22. Sheng L, Zhao Z, Su B, Tao C, Jing W (2017) Kinetic determination of lanthanum(III) by the catalytic effect on the oxidation of fluorescent safranine dyes with potassium bromate. Anal Sci 33:1401–1405. https://doi.org/10.2116/analsci.33.1401

    Article  CAS  PubMed  Google Scholar 

  23. Bai LS, Chi ZH (2001) Kinetic spectrophotometric determination of nitrite by the catalytic oxidation of bromocresol purple with potassium bromate Chin. J Anal Chem 29:926–929. https://doi.org/10.3321/j.issn:0253-3820.2001.08.016

    Article  CAS  Google Scholar 

  24. Balasubramanian P, Settu R, Chen S, Chen T, Sharmila G (2018) A new electrochemical sensor for highly sensitive and selective detection of nitrite in food samples based on sonochemical synthesized calcium ferrite (CaFe2O4 ) .clusters modified screen printed carbon electrode. J Colloid Interface Sci 524:417–426. https://doi.org/10.1016/j.jcis.2018.04.036

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Tan W, Ji H, Liu F, Wu D, Ma J (2018) Facile electrosynthesis of nickel hexacyanoferrate/poly(2,6-diaminopyridine) hybrids as highly sensitive nitrite sensor. Sensors Actuators B Chem 264:240–248. https://doi.org/10.1016/j.snb.2018.02.171

    Article  CAS  Google Scholar 

  26. Huang S, Liu L, Mei L, Zhou J, Guo F, Wang A, Fen J (2016) Electrochemical sensor for nitrite using a glassy carbon electrode modified with gold-copper nanochain networks. Microchim Acta 183:791–797. https://doi.org/10.1007/s00604-015-1717-z

    Article  CAS  Google Scholar 

  27. Lo HS, Lo KW, Yeung CF, Wong CY (2017) Rapid visual and spectrophotometric nitrite detection by cyclometalated ruthenium complex. Anal Chim Acta 990:135–140. https://doi.org/10.1016/j.aca.2017.07.018

    Article  CAS  PubMed  Google Scholar 

  28. Feng Z, Li Z, Zhang X, Shi Y, Zhou N (2017) Nitrogen-doped carbon quantum dots as fluorescent probes for sensitive and selective detection of nitrite. Molecules 22:2061–2071. https://doi.org/10.3390/molecules22122061

    Article  CAS  PubMed Central  Google Scholar 

  29. Zhang H, Kang S, Wang G, Zhang Y, Zhao H (2016) Fluorescence determination of nitrite in water using prawn-shell derived nitrogen-doped carbon nanodosas fluorophores. ACS Sens 1:875−881. https://doi.org/10.1021/acssensors.6b00269

  30. Ren H, Fan WB, Yu L (2018) Polyethylenimine-capped CdS quantum dots for sensitive and selective detection of nitrite in vegetables and eater. J Agric Food Chem 66:8851–8858. https://doi.org/10.1021/acs.jafc.8b01951

    Article  CAS  PubMed  Google Scholar 

  31. Gu B, Huang L, Hu J, Liu J, Su W, Duan X (2016) Highly selective ansensitive fluorescent probe for the detection of nitrite. Talanta 152:155–161. https://doi.org/10.1016/j.talanta.2016.01.059

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Xue H, Liu J, Wang Q, Wang L (2018) Carbon quantum dot-basd fluorometric nitrite assay by exploiting the oxidation of iron(ii) to iron(iii). Microchim Acta 185:129. https://doi.org/10.1007/s00604-018-2668-y

    Article  CAS  Google Scholar 

  33. Wang Q, Huang H, Ning B, Li M, He L (2016) A highly sensitive and selective spectrofluorimetric method for the determination of nitrite in food products. Food Anal Methods 9:1293–1300. https://doi.org/10.1007/s12161-015-0306-4

    Article  Google Scholar 

  34. Wang L, Chen J, Chen H, Zhou C, Ling B, Fu J (2011) A sensitive fluorimetric method for determination of trace amounts of nitrite based on luminescence energy transfer. J Lumin 131:83–87. https://doi.org/10.1016/j.jlumin.2010.09.003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21305100), the Project of Scientific and Technologic Infrastructure of Suzhou (SZS201708) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jilin Yan.

Ethics declarations

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Z., Wang, X., Luo, M. et al. Fluorometric determination of nitrite through its catalytic effect on the oxidation of iodide and subsequent etching of gold nanoclusters by free iodine. Microchim Acta 186, 619 (2019). https://doi.org/10.1007/s00604-019-3729-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3729-6

Keywords

Navigation