Skip to main content
Log in

A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sponge inspired three dimensional flexible aluminum foil based ZnO nanosheet array substrate is described for use in real-world surface enhanced Raman spectroscopic detection. Gold and silver nanoparticles were employed to form numerous hot spots on uniformly grown ZnO nanosheets on the substrate. This flexible spongy substrate can extract analytes (such as the fungicide thiram) from various complex sample surfaces by physical swabbing. Specifically, this substrate was applied to detect thiram on the surface of fruits and vegetables. Non-destructive recycling detection with a relative standard deviation of 6.1% was accomplished by monitoring the characteristic Raman peak at 1382 cm−1. This modified substrate has a low detection limit (0.2 ng cm−2 of thiram for apple and tomato), outstanding uniformity (relative standard deviation = 8.9%) and thermal stability (relative standard deviation = 0.9%).

Schematic representation of using a aluminum foil modified with ZnO nanosheets as a flexible and recyclable substrate for SERS analysis of pollutants. The substrate can be cleaned after use by UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fleischmann M, Hendra PJ, McQuillan AJ (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166

    Article  CAS  Google Scholar 

  2. Zhang L, Liu T, Liu K, Han L, Yin Y, Gao C (2015) Gold Nanoframes by nonepitaxial growth of au on AgI nanocrystals for surface-enhanced Raman spectroscopy. Nano Lett 15(7):4448–4454

    Article  CAS  Google Scholar 

  3. Sykes EA, Chen J, Zheng G, Chan WCW (2014) Investigating the impact of nanoparticle size on active and passive tumor targeting efficiency. ACS Nano 8(6):5696–5706

    Article  CAS  Google Scholar 

  4. Gong Z, Du H, Cheng F, Wang C, Wang C, Fan M (2014) Fabrication of SERS swab for direct detection of trace explosives in fingerprints. ACS Appl Mater Interfaces 6(24):21931–21937

    Article  CAS  Google Scholar 

  5. Zhang C, Gao Y, Yang N, You T, Chen H, Yin P (2018) Direct determination of the tumor marker AFP via silver nanoparticle enhanced SERS and AFP-modified gold nanoparticles as capturing substrate. Microchim Acta 185(2):90

    Article  Google Scholar 

  6. Fu C, Wang Y, Chen G, Yang L, Xu S, Xu W (2015) Aptamer-based surface-enhanced Raman scattering-microfluidic sensor for sensitive and selective polychlorinated biphenyls detection. Anal Chem 87(19):9555–9558

    Article  CAS  Google Scholar 

  7. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2 75(0):790–798

    Article  CAS  Google Scholar 

  8. Ren W, Zhu C, Wang E (2012) Enhanced sensitivity of a direct SERS technique for Hg2+ detection based on the investigation of the interaction between silver nanoparticles and mercury ions. Nanoscale 4(19):5902–5909

    Article  CAS  Google Scholar 

  9. Jensen L, Aikens CM, Schatz GC (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 37(5):1061–1073

    Article  CAS  Google Scholar 

  10. Y-e S, Wang W, Zhan J (2016) A positively charged silver nanowire membrane for rapid on-site swabbing extraction and detection of trace inorganic explosives using a portable Raman spectrometer. Nano Res 9(8):2487–2497

    Article  Google Scholar 

  11. Li JF, Huang YF, Ding Y, Yang ZL, Li SB, Zhou XS, Fan FR, Zhang W, Zhou ZY, Wu DY, Ren B, Wang ZL, Tian ZQ (2010) Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464:392-395.https://www.nature.com/articles/nature08907#supplementary-information

    Article  CAS  Google Scholar 

  12. Martín A, Wang JJ, Iacopino D (2014) Flexible SERS active substrates from ordered vertical au nanorod arrays. RSC Adv 4(38):20038–20043

    Article  Google Scholar 

  13. Fan M, Zhang Z, Hu J, Cheng F, Wang C, Tang C, Lin J, Brolo AG, Zhan H (2014) Ag decorated sandpaper as flexible SERS substrate for direct swabbing sampling. Mater Lett 133:57–59

    Article  CAS  Google Scholar 

  14. Li D, Duan H, Wang Y, Zhang Q, Cao H, Deng W, Li D (2017) On-site preconcentration of pesticide residues in a drop of seawater by using electrokinetic trapping, and their determination by surface-enhanced Raman scattering. Microchim Acta 185(1):10

    Article  Google Scholar 

  15. Duan N, Shen M, Wu S, Zhao C, Ma X, Wang Z (2017) Graphene oxide wrapped Fe3O4@au nanostructures as substrates for aptamer-based detection of Vibrio parahaemolyticus by surface-enhanced Raman spectroscopy. Microchim Acta 184(8):2653–2660

    Article  CAS  Google Scholar 

  16. Wang J, Yang L, Liu B, Jiang H, Liu R, Yang J, Han G, Mei Q, Zhang Z (2014) Inkjet-printed silver nanoparticle paper detects airborne species from crystalline explosives and their Ultratrace residues in open environment. Anal Chem 86(7):3338–3345

    Article  CAS  Google Scholar 

  17. Chen J, Huang Y, Kannan P, Zhang L, Lin Z, Zhang J, Chen T, Guo L (2016) Flexible and adhesive surface enhance Raman scattering active tape for rapid detection of pesticide residues in fruits and vegetables. Anal Chem 88(4):2149–2155

    Article  CAS  Google Scholar 

  18. Wang P, Wu L, Lu Z, Li Q, Yin W, Ding F, Han H (2017) Gecko-inspired Nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal Chem 89(4):2424–2431

    Article  CAS  Google Scholar 

  19. Zhu Y, Li M, Yu D, Yang L (2014) A novel paper rag as ‘D-SERS’ substrate for detection of pesticide residues at various peels. Talanta 128:117–124

    Article  CAS  Google Scholar 

  20. Barbillon G, Sandana VE, Humbert C, Bélier B, Rogers DJ, Teherani FH, Bove P, McClintock R, Razeghi M (2017) Study of au coated ZnO nanoarrays for surface enhanced Raman scattering chemical sensing. J Mater Chem C 5(14):3528–3535

    Article  CAS  Google Scholar 

  21. Yang Y, Liu J, Fu Z-W, Qin D (2014) Galvanic replacement-free deposition of au on ag for Core–Shell Nanocubes with enhanced chemical stability and SERS activity. J Am Chem Soc 136(23):8153–8156

    Article  CAS  Google Scholar 

  22. Ansar SM, Ameer FS, Hu W, Zou S, Pittman CU, Zhang D (2013) Removal of molecular adsorbates on gold nanoparticles using sodium borohydride in water. Nano Lett 13(3):1226–1229

    Article  CAS  Google Scholar 

  23. Zhou Y, Lee C, Zhang J, Zhang P (2013) Engineering versatile SERS-active nanoparticles by embedding reporters between au-core/ag-shell through layer-by-layer deposited polyelectrolytes. J Mater Chem C 1(23):3695–3699

    Article  CAS  Google Scholar 

  24. Liu B, Tan H, Chen Y (2013) Visual detection of silver(I) ions by a chromogenic reaction catalyzed by gold nanoparticles. Microchim Acta 180(5):331–339

    Article  CAS  Google Scholar 

  25. Yang L, Wang W, Jiang H, Zhang Q, Shan H, Zhang M, Zhu K, Lv J, He G, Sun Z (2017) Improved SERS performance of single-crystalline TiO2 nanosheet arrays with coexposed {001} and {101} facets decorated with ag nanoparticles. Sensors Actuators B Chem 242:932–939

    Article  CAS  Google Scholar 

  26. Saute B, Narayanan R (2011) Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst 136(3):527–532

    Article  CAS  Google Scholar 

  27. Markina NE, Markin AV, Zakharevich AM, Goryacheva IY (2017) Calcium carbonate microparticles with embedded silver and magnetite nanoparticles as new SERS-active sorbent for solid phase extraction. Microchim Acta 184(10):3937–3944

    Article  CAS  Google Scholar 

  28. Bu Y, Liu K, Hu Y, Kaneti YV, Brioude A, Jiang X, Wang H, Yu A (2017) Bilayer composites consisting of gold nanorods and titanium dioxide as highly sensitive and self-cleaning SERS substrates. Microchim Acta 184(8):2805–2813

    Article  CAS  Google Scholar 

  29. Kang JS, Hwang SY, Lee CJ, Lee MS (2002) SERS of Dithiocarbamate pesticides adsorbed on silver surface; Thiram. Bull Kor Chem Soc 23:1604–1610

    Article  CAS  Google Scholar 

  30. Chao YC, Chen CY, Lin CA, He JH (2011) Light scattering by nanostructured anti-reflection coatings. Energy Environ Sci 4(9):3436–3441

    Article  CAS  Google Scholar 

  31. Qiu B, Xing M, Yi Q, Zhang J (2015) Chiral carbonaceous nanotubes modified with Titania nanocrystals: Plasmon-free and recyclable SERS sensitivity. Angew Chem Int Ed 54(36):10643–10647

    Article  CAS  Google Scholar 

  32. Alessandri I, Ferroni M (2009) Exploiting optothermal conversion for nanofabrication: site-selective generation of au/TiO2 inverse opals. J Mater Chem 19(42):7990–7994

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial support from the National Natural Science Foundation of China (NSFC 21575077, 21750110438, 21876099), the Science and Technology Development Plans of Shandong Province (ZR2017ZC0227) and the Fundamental Research Funds of Shandong University (2016JC030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing Chen, Xiaoli Zhang or Jinhua Zhan.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.76 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Yu, X., Chang, Y. et al. A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram. Microchim Acta 186, 458 (2019). https://doi.org/10.1007/s00604-019-3579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3579-2

Keywords

Navigation