Skip to main content
Log in

A nanocomposite prepared from copper(II) and nitrogen-doped graphene quantum dots with peroxidase mimicking properties for chemiluminescent determination of uric acid

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Nitrogen-doped graphene quantum dots (N-GQD) were employed along with Cu(II) ions under alkaline conditions and room temperature to synthesize nanocomposites of type Cu(II)/Cu2O/N-GQDs. These nanocomposites exhibit excellent stability and dispersity, and also display a peroxidase-like activity that is superior to pure Cu2O nanoparticles and natural peroxidase (POx). A chemiluminescence (CL) method was designed that is based on the use of uricase which oxidizes uric acid under formation of H2O2. The nanocomposites were used as a POx mimic in the luminol-H2O2 CL system. Under optimized conditions, a linear relationship between CL intensity and the uric acid (UA) concentration in the range of 0.16—4.0 μM, and a detection limit of 0.041 μM (at S/N = 3) were obtained. The CL method was applied to the determination of UA in spiked serum and urine, and recoveries ranged from 85.0 to 121.3%.

Schematic presentation of synthesis strategy of Cu(II)/Cu2O/N-GQDs and the CL method based Cu(II)/Cu2O/N-GQDs for H2O2-meidated uric acid detection. The method can be used for the determination of uric acid (UA) with the detection limit of 0.041 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kaur H, Halliwell B (1990) Action of biologically-relevant oxidizing species upon uric acid. Identification of uric acid oxidation products. Chem Biol Interact 73(2–3):235–247

    Article  CAS  Google Scholar 

  2. Lakshmi D, Whitcombe MJ, Davis FP, Sharma S, Prasad BB (2011) Electrochemical detection of uric acid in mixed and clinical samples: a review. Electroanalysis 23(2):305–320

    Article  CAS  Google Scholar 

  3. Kumar S, Bhushan P, Bhattacharya S (2016) Development of a paper-based analytical device for colorimetric detection of uric acid using gold nanoparticles- graphene oxide (AuNPs-GO) conjugate. Anal Methods 8(38):6965–6973

    Article  CAS  Google Scholar 

  4. Kiran R, Scorsone E, Mailley P, Bergonzo P (2012) Quasi-real time quantification of uric acid in urine using boron doped diamond microelectrode with in situ cleaning. Anal Chem 84(23):10207–10213

    Article  CAS  Google Scholar 

  5. Liu Y, Li H, Guo B, Zhang Y (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740

    Article  CAS  Google Scholar 

  6. Gubala V, Harris LF, Ricco AJ, Tan MX, Williams DE (2011) Point of care diagnostics: status and future. Anal Chem 84(2):487–515

    Article  Google Scholar 

  7. Long Q, Fang A, Wen Y, Li H, Zhang Y, Yao S (2016) Rapid and highly-sensitive uric acid sensing based on enzymatic catalysis-induced upconversion inner filter effect. Biosens Bioelectron 86:109–114

    Article  CAS  Google Scholar 

  8. Özcan A, İlkbaş S (2015) Preparation of poly (3, 4-ethylenedioxythiophene) nanofibers modified pencil graphite electrode and investigation of over-oxidation conditions for the selective and sensitive determination of uric acid in body fluids. Anal Chim Acta 891:312–320

    Article  Google Scholar 

  9. Iranifam M, Sorouraddin MH (2014) Flow injection chemiluminescence determination of naphazoline hydrochloride in pharmaceuticals. Luminescence 29(1):48–51

    Article  CAS  Google Scholar 

  10. Iranifam M, Khabbaz Kharameh M (2015) Cupric oxide nanoparticles-enhanced chemiluminescence method for measurement of β-lactam antibiotics. Luminescence. 30(5):625–630

    Article  CAS  Google Scholar 

  11. Cai N, Tan L, Li Y, Xia T, Hu T, Su X (2017) Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Anal Chim Acta 965:96–102

    Article  CAS  Google Scholar 

  12. Lu HF, Li JY, Zhang MM, Wu D, Zhang QL (2017) A highly selective and sensitive colorimetric uric acid biosensor based on Cu(II)-catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine. Sensors Actuators B Chem 244:77–83

    Article  CAS  Google Scholar 

  13. Sheng Y, Yang H, Wang Y, Han L, Zhao Y, Fan A (2017) Silver nanoclusters-catalyzed luminol chemiluminescence for hydrogen peroxide and uric acid detection. Talanta 166:268–274

    Article  CAS  Google Scholar 

  14. Iranifam M, Hendekhale NR (2017) CuO nanoparticles-catalyzed hydrogen peroxide-sodium hydrogen carbonate chemiluminescence system used for quenchometric determination of atorvastatin, rivastigmine and topiramate. Sensors Actuators B Chem 243:532–541

    Article  CAS  Google Scholar 

  15. Luo F, Lin Y, Zheng L, Lin X, Chi Y (2015) Encapsulation of hemin in metal-organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition. ACS Appl Mater Interfaces 7(21):11322–11329

    Article  CAS  Google Scholar 

  16. Tang D, Liu J, Yan X, Kang L (2016) Graphene oxide derived graphene quantum dots with different photoluminescence properties and peroxidase-like catalytic activity. RSC Adv 6(56):50609–50617

    Article  CAS  Google Scholar 

  17. Lin L, Song X, Chen Y, Rong M, Zhao T, Wang Y, Ji Y, Chen X (2015) Intrinsic peroxidase-like catalytic activity of nitrogen-doped graphene quantum dots and their application in the colorimetric detection of H2O2 and glucose. Anal Chim Acta 869:89–95

    Article  CAS  Google Scholar 

  18. Abdolmohammad-Zadeh H, Rahimpour E (2015) Utilizing of Ag@AgCl@graphene oxide@Fe3O4 nanocomposite as a magnetic plasmonic nanophotocatalyst in light-initiated H2O2 generation and chemiluminescence detection of nitrite. Talanta 144:769–777

    Article  CAS  Google Scholar 

  19. Lee S, Liang CW, Martin LW (2011) Synthesis, control, and characterization of surface properties of Cu2O nanostructures. ACS Nano 5(5):3736–3743

    Article  CAS  Google Scholar 

  20. Huang C, Ye W, Liu Q, Qiu X (2014) Dispersed Cu2O octahedrons on h-BN nanosheets for p-nitrophenol reduction. ACS Appl Mater Interfaces 6(16):14469–14476

    Article  CAS  Google Scholar 

  21. Wang YJ, Wilkinson DP, Zhang J (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111(12):7625–7651

    Article  CAS  Google Scholar 

  22. Si Y, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20(21):6792–6797

    Article  CAS  Google Scholar 

  23. Shi B, Su Y, Zhao J, Liu R, Zhao Y, Zhao S (2015) Visual discrimination of dihydroxybenzene isomers based on a nitrogen-doped graphene quantum dot-silver nanoparticle hybrid. Nanoscale 7(41):17350–17358

    Article  CAS  Google Scholar 

  24. Xu Y, Wang H, Yu Y, Tian L, Zhao W, Zhang B (2011) Cu2O nanocrystals: surfactant-free room-temperature morphology-modulated synthesis and shape-dependent heterogeneous organic catalytic activities. J Phys Chem C 115(31):15288–15296

    Article  CAS  Google Scholar 

  25. Lim H, Ju Y, Kim J (2016) Tailoring catalytic activity of Pt nanoparticles encapsulated inside dendrimers by tuning nanoparticle sizes with subnanometer accuracy for sensitive chemiluminescence-based analyses. Anal Chem 88(9):4751–4758

    Article  CAS  Google Scholar 

  26. Zhao Z, Wang Y, Li P, Sang S, Zhang W, Hu J, Kun Lian K (2015) A highly sensitive electrochemical sensor based on cu/Cu2O@carbon nanocomposite structures for hydrazine detection. Anal Methods 7(21):9040–9046

    Article  CAS  Google Scholar 

  27. An X, Li K, Tang J (2014) Cu2O/reduced graphene oxide composites for the photocatalytic conversion of CO2. ChemSusChem 7(4):1086–1093

    Article  CAS  Google Scholar 

  28. Mei L, Feng J, Wu L, Chen J, Shen L, Xie Y, Wang A (2016) A glassy carbon electrode modified with porous Cu2O nanospheres on reduced graphene oxide support for simultaneous sensing of uric acid and dopamine with high selectivity over ascorbic acid. Microchim Acta 183(6):2039–2046

    Article  CAS  Google Scholar 

  29. Wu S, Fu G, Lv W, Wei J, Chen W, Yi H, Gu M, Bai X, Zhu L, Tan C, Liang Y, Zhu G, He J, Wang X, Zhang K, Xiong J, He W (2018) A single-step hydrothermal route to 3D hierarchicalCu2O/CuO/rGO nanosheets as high-performance anode of lithium-ion batteries. Small 14(5):1702667–1702675

    Article  Google Scholar 

  30. Yuan F, Ding L, Li Y, Li X, Fan L, Zhou S, Fang D, Yang S (2015) Multicolor fluorescent graphene quantum dots colorimetrically responsive to all-pH and a wide temperature range. Nanoscale 7(27):11727–11733

    Article  CAS  Google Scholar 

  31. Kuo C, Chen C, Huang M (2007) Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv Funct Mater 17(18):3773–3780

    Article  CAS  Google Scholar 

  32. Chen X, Jin Q, Wu L, Tung C, Tang X (2014) Synthesis and unique photoluminescence properties of nitrogen-rich quantum dots and their applications. Angew Chem Int Ed 53(46):12542–12547

    CAS  Google Scholar 

  33. Sun H, Li X, Li Y, Fan L, Kraatz HB (2013) A novel colorimetric potassium sensor based on the substitution of lead from G-quadruplex. Analyst 138(3):856–862

    Article  CAS  Google Scholar 

  34. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N, Wang T, Feng J, Yang D, Perrett S, Yan X (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (No. 21665001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingfang Shi.

Ethics declarations

The author(s) declare that they have no competing interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 1.67 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, B., Su, Y., Duan, Y. et al. A nanocomposite prepared from copper(II) and nitrogen-doped graphene quantum dots with peroxidase mimicking properties for chemiluminescent determination of uric acid. Microchim Acta 186, 397 (2019). https://doi.org/10.1007/s00604-019-3491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3491-9

Keywords

Navigation