Skip to main content
Log in

Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An aptamer based impedimetric assay for the mycotoxin patulin (PAT) is described. A glassy carbon electrode (GCE) was modified with black phosphorus nanosheets (BP NSs) and modified with PAT aptamer by electrostatic attraction. Detection is based on the variations of electron transfer resistance at the modified electrode surface. This assay can detect PAT over a linear range that extends from 1.0 nM to 1.0 μM with a 0.3 nM detection limit. To improve the performance of the sensor, the BP NS-GCE was further modified with gold nanoparticles and then with thiolated PAT aptamer. This modified electrode, operated at an applied potential of 0.18 V (vs. Ag/AgCl), has a wider linear range (0.1 nM to 10.0 μM) and a lower detection limits (0.03 nM). Both assays were successfully applied to the analysis of (spiked) genuine food samples.

Black phosphorus nanosheets (BP NSs) were used to fabricate an aptamer based assay for patulin. To further improve the performance of the electrode, gold nanoparticles (AuNP) were placed on the surface of black phosphorus nanosheets (AuNP-BP NSs) by electrostatic attraction for patulin aptasensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marín S, Mateo EM, Sanchis V, Valle-Algarra FM, Ramos AJ, Jiménez M (2011) Patulin contamination in fruit derivatives, including baby food, from the Spanish market. Food Chem 124:563–568

    Article  Google Scholar 

  2. Wu S, Duan N, Zhang W, Zhao S, Wang Z (2016) Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Anal Biochem 508:58–64

    Article  CAS  Google Scholar 

  3. Zhang G, Liu Z, Fan L, Guo Y (2018) Electrochemical prostate specific antigen aptasensor based on hemin functionalized graphene-conjugated palladium nanocomposites. Microchim Acta 185:159

    Article  Google Scholar 

  4. Li X, Li H, Li X, Zhang Q (2017) Determination of trace patulin in apple-based food matrices. Food Chem 233:290–301

    Article  CAS  Google Scholar 

  5. Guo W, Pi F, Zhang H, Sun J, Zhang Y, Sun X (2017) A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens Bioelectron 98:299–304

    Article  CAS  Google Scholar 

  6. Welke JE, Hoeltz M, Dottori HA, Noll IB (2009) Quantitative analysis of patulin in apple juice by thin-layer chromatography using a charge coupled device detector. Food Addit Contam A 26:754–758

    Article  CAS  Google Scholar 

  7. Beltrán E, Ibáñez M, Sancho JV, Hernandez F (2014) Determination of patulin in apple and derived products by UHPLC-MS/MS. study of matrix effects with atmospheric pressure ionisation sources. Food Chem 142:400–407

    Article  Google Scholar 

  8. Kharandi N, Babri M, Azad J (2013) A novel method for determination of patulin in apple juices by GC-MS. Food Chem 141:1619–1623

    Article  CAS  Google Scholar 

  9. Funari R, Della Ventura B, Carrieri R, Morra L, Lahoz E, Gesuele F, Altuccia C, Velotta R (2015) Detection of parathion and patulin by quartz-crystal microbalance functionalized by the photonics immobilization technique. Biosens Bioelectron 67:224–229

    Article  CAS  Google Scholar 

  10. Chen YX, Wu X, Huang KJ (2018) A sandwich-type electrochemical biosensing platform for microRNA-21 detection using carbon sphere-MoS2 and catalyzed hairpin assembly for signal amplification. Sensors Actuators B Chem 270:179–186

    Article  CAS  Google Scholar 

  11. Chanique GD, Arévalo AH, Zon MA, Fernández H (2013) Eletrochemical reduction of patulin and 5-hydroxymethylfurfural in both neutral and acid non-aqueous media. Their electroanalytical determination in apple juices. Talanta 111:85–92

    Article  Google Scholar 

  12. Roushani M, Nezhadali A, Jalilian Z (2018) An electrochemical chlorpyrifos aptasensor based on the use of a glassy carbon electrode modified with an electropolymerized aptamer-imprinted polymer and gold nanorods. Microchim Acta 185:551

    Article  Google Scholar 

  13. Lei YM, Huang WX, Zhao M, Chai YQ, Yuan R, Zhuo Y (2015) Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead ion. Anal Chem 87:7787–7794

    Article  CAS  Google Scholar 

  14. Nguyen VT, Seo HB, Kim BC, Kim SK, Song CS, Gu MB (2016) Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers. Biosens Bioelectron 86:293–300

    Article  CAS  Google Scholar 

  15. Lei W, Liu G, Zhang J, Liu M (2017) Black phosphorus nanostructures: recent advances in hybridization, doping and functionalization. Chem Soc Rev 46:3492–3509

    Article  CAS  Google Scholar 

  16. Chen W, Ouyang J, Yi X, Xu Y, Niu C, Zhang W, Wang L, Sheng J, Deng L, Liu Y, Guo S (2018) Black phosphorus Nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Adv Mater 30:1703458

    Article  Google Scholar 

  17. Millstone JE, Wei W, Jones MR, Yoo H, Mirkin CA (2008) Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett 8:2526–2529

    Article  CAS  Google Scholar 

  18. Wu S, Zhang H, Shi Z, Duan N, Fang C, Dai S, Wang Z (2015) Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50:597–604

    Article  CAS  Google Scholar 

  19. Saleh TA, Al-Shalalfeh MM, Al-Saadi AA (2018) Silver loaded graphene as a substrate for sensing 2-thiouracil using surface-enhanced Raman scattering. Sensors Actuators B Chem 254:1110–1117

    Article  CAS  Google Scholar 

  20. Dhara K, Mahapatra DR (2018) Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials. Microchim Acta 185:49

    Article  Google Scholar 

  21. Lei W, Zhang T, Liu P, Rodriguez JA, Liu G, Liu M (2016) Bandgap-and local field-dependent photoactivity of ag/black phosphorus nanohybrids. ACS Catal 6:8009–8020

    Article  CAS  Google Scholar 

  22. Eswaraiah V, Zeng Q, Long Y, Liu Z (2016) Black phosphorus nanosheets: synthesis, characterization and applications. Small 12:3480–3502

    Article  CAS  Google Scholar 

  23. Li L, Yu Y, Ye GJ, Ge Q, Ou X, Wu H, Feng D, Chen XH, Zhang Y (2014) Black phosphorus field-effect transistors. Nat Nanotechnol 9:372–377

    Article  CAS  Google Scholar 

  24. Fei R, Yang L (2014) Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett 14:2884–2889

    Article  CAS  Google Scholar 

  25. Xu GL, Chen ZH, Zhong GM, Liu YZ, Yang YT, Ma Y, Ren Y, Zuo XB, Wu XH, Zhang XY, Amine K (2016) Nanostructured black phosphorus/Ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries. Nano Lett 16:3955–3965

    Article  CAS  Google Scholar 

  26. Lee HU, Lee SC, Won J, Son BC, Choi S, Kim Y, Park SY, Kim HS, Lee YC, Lee J (2015) Stable semiconductor black phosphorus (BP)@ titanium dioxide (TiO2) hybrid photocatalysts. Sci Rep 5:8691

    Article  CAS  Google Scholar 

  27. Yu Y, Fan Z (2017) Determination of patulin in apple juice using magnetic solid-phase extraction coupled with high-performance liquid chromatography. Food Addit Contam A 34:273–281

    CAS  Google Scholar 

  28. Malysheva SV, Di Mavungu JD, Boonen J, De Spiegeleer B, Goryacheva IY, Vanhaecke L, De Saeger S (2012) Improved positive electrospray ionization of patulin by adduct formation: usefulness in liquid chromatography-tandem mass spectrometry multi-mycotoxin analysis. J Chromatogr A 1270:334–339

    Article  CAS  Google Scholar 

  29. Pennacchio A, Ruggiero G, Staiano M, Piccialli G, Oliviero G, Lewkowicz A, Synak A, Bojarski P, Auria SD (2014) A surface plasmon resonance based biochip for the detection of patulin toxin. Opt Mater 36:1670–1675

    Article  CAS  Google Scholar 

  30. Bagheri N, Khataee A, Habibi B, Hassanzadeh J (2018) Mimetic ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–718

    Article  CAS  Google Scholar 

  31. Wu Z, Xu E, Jin Z, Irudayaraj J (2018) An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chem 249:136–142

    Article  CAS  Google Scholar 

  32. Zhang W, Han Y, Chen X, Luo X, Wang J, Yue T, Li Z (2017) Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chem 232:145–154

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this project by the National Science Foundation of China (21575113), the State Key Laboratory of Analytical Chemistry for Life Science (SKLACLS1811), the Natural Science Foundation of Shaanxi Province in China (2017JM2036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qinglin Sheng or Tianli Yue.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 6364 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Qiao, X., Wang, Y. et al. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Microchim Acta 186, 238 (2019). https://doi.org/10.1007/s00604-019-3339-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3339-3

Keywords

Navigation