Skip to main content
Log in

Reduced graphene oxide nanosheets modified with plasmonic gold-based hybrid nanostructures and with magnetite (Fe3O4) nanoparticles for cyclic voltammetric determination of arsenic(III)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors have fabricated reduced graphene oxide nanosheets (rGO) supported with Fe3O4 nanoparticles and Ag/Au hollow nanoshells. The material was placed on a glassy carbon electrode which is shown to enable highly sensitive determination of As(III) which is first preconcentrated from solution at a potential of −0.35 V (versus Ag/AgCl) for 100 s. The electrode, typically operated at a working potential as low as 0.06 V, has a linear response in the 0.1 to 20 ppb As(III) concentration range and a 0.01 ppb detection limit. The electrochemical sensitivity is 52 μA ppb−1. The high sensitivity is assumed to be the result of various synergistic effects. The method was applied to ultratrace (0.1 ppt) determination of As(III) in real water samples.

The hybrid displays a wide linear response in the 0.1 to 20 ppb As(III) concentration range and a 0.01 ppb detection limit. The high sensitivity is attributed to various synergistic effects. The method was applied to ultratrace determination of As(III) in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao C, Yu X-Y, Xiong S-Q, Liu J-H, Huang X-J (2013) Electrochemical detection of arsenic(III) completely free from Noble metal: Fe3O4 microspheres-room temperature ionic liquid composite showing better performance than gold. Anal Chem 85:2673–2680

    Article  CAS  Google Scholar 

  2. Pungjunun K, Chaiyo S, Jantrahong I, Nantaphol S, Siangproh W, Chailapakul O (2018) Anodic stripping Voltammetric determination of Total arsenic using a gold nanoparticle-modified boron-doped diamond electrode on a paper-based device. Microchim Acta 185:324

    Article  Google Scholar 

  3. Bralatei E, Nekrosiute K, Ronan J, Raab A, McGovern E, Stengel DB, Feldmann J (2017) A field deployable method for a rapid screening analysis of inorganic arsenic in seaweed. Microchim Acta 184:1701–1709

    Article  CAS  Google Scholar 

  4. Su CK, Chen WC (2018) 3D-printed, TiO2 NP-incorporated minicolumn coupled with ICP-MS for speciation of inorganic arsenic and selenium in high-salt-content samples. Microchim Acta 185:268

    Article  Google Scholar 

  5. Yang M, Chen X, Jiang T-J, Guo Z, Liu J-H, Huang X-J (2016) Electrochemical detection of trace arsenic(III) by nanocomposite of nanorod-like α-MnO2 decorated with ∼5 nm Au nanoparticles: considering the change of arsenic speciation. Anal Chem 88:9720–9728

    Article  CAS  Google Scholar 

  6. Kempahanumakkagari S, Deep A, Kim K-H, Kumar Kailasa S, Yoon H-O (2017) Nanomaterial-based electrochemical sensors for arsenic - a review. Biosens Bioelectron 95:106–116

    Article  CAS  Google Scholar 

  7. Zaib M, Athar MM, Saeed A, Farooq U (2015) Electrochemical determination of inorganic mercury and arsenic-a review. Biosens Bioelectron 74:895–908

    Article  CAS  Google Scholar 

  8. Jia Z, Simm AO, Dai X, Compton RG (2006) The electrochemical reaction mechanism of arsenic deposition on an Au(111) electrode. J Electroanal Chem 587:247–253

    Article  CAS  Google Scholar 

  9. Zhou S, Han X, Fan H, Liu Y (2016) Electrochemical sensing toward trace as(III) based on mesoporous MnFe2O4/Au hybrid nanospheres modified glass carbon electrode. Sensors 16:935

    Article  Google Scholar 

  10. Innocenti M, Forni F, Pezzatini G, Raiteri R, Loglio F, Foresti ML (2001) Electrochemical behavior of as on silver single crystals and experimental conditions for InAs growth by ECALE. J Electroanal Chem 514:75–82

    Article  CAS  Google Scholar 

  11. Podešva P, Gablech I, Neužil P (2018) Nanostructured gold microelectrode array for ultrasensitive detection of heavy metal contamination. Anal Chem 90:1161–1167

    Article  Google Scholar 

  12. Seeber R, Terzi F, Zanardi C (2014) Functional materials in amperometric sensing, functional materials in Amperometric sensing. Springer, Berlin, Heidelberg

    Google Scholar 

  13. Feeney R, Kounaves SP (2000) On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array. Anal Chem 72:2222–2228

    Article  CAS  Google Scholar 

  14. Rahman MR, Okajima T, Ohsaka T (2010) Selective detection of As(III) at the au(111)-like polycrystalline gold electrode. Anal Chem 82:9169–9176

    Article  CAS  Google Scholar 

  15. Zhao Z, Wang P, Xu X, Sheves M, Jin Y (2015) Bacteriorhodopsin/Ag nanoparticle-based hybrid nano-bio electrocatalyst for efficient and robust H2 evolution from water. J Am Chem Soc 137:2840–2843

    Article  CAS  Google Scholar 

  16. Jin Y, Gao X (2009) Plasmonic fluorescent quantum dots. Nat Nanothch 4:571–576

    Article  CAS  Google Scholar 

  17. Zhao Z, Wu H, He H, Xu X, Jin Y (2014) A high-performance binary Ni–Co hydroxide-based water oxidation electrode with three-dimensional coaxial nanotube Array structure. Adv Funct Mater 24:4698–4705

    Article  CAS  Google Scholar 

  18. Jin Y (2013) Multifunctional compact hybrid au Nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release. Acc Chem Res 47:138–148

    Article  Google Scholar 

  19. Brina R, Pons S, Fleischmann M (1988) Ultramicroelectrode sensors and detectors: considerations of the stability, sensitivity, reproducibility, and mechanism of ion transport in gas phase chromatography and in high performance liquid phase chromatography. J Electroanal Chem Interfacial Electrochem 244:81–90

  20. Halas NJ, Lal S, Chang W-S, Link S, Nordlander P (2011) Plasmons in strongly coupled metallic nanostructures. Chem Rev 111:3913–3961

    Article  CAS  Google Scholar 

  21. Wu H, Wang P, He H, Jin Y (2012) Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable Plasmonic and catalytic properties. Nano Res 5:135–144

    Article  CAS  Google Scholar 

  22. Liu M, Zhang R, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114:5117–5160

    Article  CAS  Google Scholar 

  23. Ramesha GK, Sampath S (2011) In-situ formation of graphene–lead oxide composite and its use in trace arsenic detection. Sensors Actuators B Chem 160:306–311

    Article  CAS  Google Scholar 

  24. Andjelkovic I, Tran DN, Kabiri S, Azari S, Markovic M, Losic D (2015) Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl Mater Interfaces 7:9758–9766

    Article  CAS  Google Scholar 

  25. Chandra V, Park J, Chun Y, Lee JW, Hwang I-C, Kim KS (2010) Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano 4:3979–3986

    Article  CAS  Google Scholar 

  26. Kumar S, Nair RR, Pillai PB, Gupta SN, Iyengar MA, Sood AK (2014) Graphene oxide–MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436

    Article  CAS  Google Scholar 

  27. Chimezie AB, Hajian R, Yusof NA, Woi PM, Shams N (2017) Fabrication of reduced graphene oxide-magnetic nanocomposite (rGO-Fe3O4) as an electrochemical sensor for trace determination of as(III) in water resources. J Electroanal Chem 796:33–42

    Article  CAS  Google Scholar 

  28. Lee PC, Meisel D (1982) Adsorption and surface-enhanced raman of dyes on silver and aold sols. J Phys Chem C 86:3391–3395

    Article  CAS  Google Scholar 

  29. Jin Y, Dong S (2002) Diffusion-limited, aggregation-based, mesoscopic assembly of roughened Core–Shell bimetallic nanoparticles into fractal networks at the air–water Interface. Angew Chem Int Ed 41:1040–1044

    Article  CAS  Google Scholar 

  30. McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987

    Article  CAS  Google Scholar 

  31. Wouda PT, Schmid M, Nieuwenhuys BE, Varga P (1998) STM study of the (111) and (100) surfaces of PdAg. Surf Sci 417:292–300

    Article  CAS  Google Scholar 

  32. Amandusson H, Ekedahl LG, Dannetun H (2001) Hydrogen permeation through surface modified Pd and PdAg membranes. J Membr Sci 193:35–47

    Article  CAS  Google Scholar 

  33. Cong H-P, He J-J, Lu Y, Yu S-H (2010) Water-soluble magnetic-functionalized reduced graphene oxide sheets: in situ synthesis and magnetic resonance imaging applications. Small 6:169–173

    Article  CAS  Google Scholar 

  34. Zhao Z, Zhang G, Sun L, Gao Y, Yang X, Li Y (2012) Synthesis of a hierarchical three-component nanocomposite structure system with enhanced electrocatalytic and photoelectrical properties. Chem–Eur J 18:5248–5255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from National Natural Science Foundation (Grant No. 21605057, No. 21705056), Natural Science Foundation of Shandong Province (No. ZR2016BQ07), Foundation of State Key Laboratory of Electroanaytical Chemistry (SKLEAC201907), and Study Abroad Fund were acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlu Zhao.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 893 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Li, C. & Wu, H. Reduced graphene oxide nanosheets modified with plasmonic gold-based hybrid nanostructures and with magnetite (Fe3O4) nanoparticles for cyclic voltammetric determination of arsenic(III). Microchim Acta 186, 226 (2019). https://doi.org/10.1007/s00604-019-3328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3328-6

Keywords

Navigation