Skip to main content
Log in

Ultrasound assisted dispersive solid phase extraction of triazole fungicides by using an N-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasound-assisted method is described for dispersive solid phase extraction of trace levels of triazole fungicides. A sorbent was prepared from an N-heterocyclic carbene copper complex that was supported on ionic liquid-modified graphene oxide. The sorbent was characterized by scanning electron microscopy, transmission electron microscopy, Raman and FT-IR spectroscopy, energy-dispersive X-ray spectroscopy and elemental mapping. The capability of sorption and extraction is mainly based on complexation with Cu (I) ions. The variables affecting extraction were optimized. Following desorption with ethanol, the fungicides were quantified by corona discharge ion mobility spectrometry. Under optimized conditions (solution pH value: 7.0; amount of sorbent: 10 mg; extraction time: 3 min; desorption agent: ethanol), the technique provides good linearity (>0.994), repeatability (RSD < 4.1%), low limits of detection (0.18 ng.mL−1), excellent preconcentration factors (468–476) and high recoveries from spiked environmental water samples (92–94%). The sorbent can be reused over five cycles without significant loss of its activity.

Schematic presentation of design and synthesis of the N-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent for triazole fungicides and its application in ultrasound-assisted dispersive solid phase extraction with ion mobility spectrometric detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kahle M, Buerge IJ, Hauser A et al (2008) Azole fungicides: occurrence and fate in wastewater and surface waters. Environ Sci Technol 42:7193–7200. https://doi.org/10.1021/es8009309

    Article  CAS  PubMed  Google Scholar 

  2. Buerge IJ, Poiger T, Müller MD, Buser H-R (2006) Influence of pH on the stereoselective degradation of the fungicides epoxiconazole and cyproconazole in soils. Environ Sci Technol 40:5443–5450

    Article  CAS  Google Scholar 

  3. Lv X, Pan L, Wang J et al (2017) Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. Environ Pollut 222:504–512. https://doi.org/10.1016/J.ENVPOL.2016.11.051

    Article  CAS  PubMed  Google Scholar 

  4. Zhu B, Liu L, Gong Y-X et al (2014) Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos. Environ Sci Pollut Res 21:13625–13635. https://doi.org/10.1007/s11356-014-3317-6

    Article  CAS  Google Scholar 

  5. Abolghasemi MM, Hassani S, Bamorowat M (2016) Efficient solid-phase microextraction of triazole pesticides from natural water samples using a Nafion-loaded trimethylsilane-modified mesoporous silica coating of type SBA-15. Microchim Acta 183:889–895. https://doi.org/10.1007/s00604-015-1724-0

    Article  CAS  Google Scholar 

  6. Oller I, Malato S, Sánchez-Pérez JA et al (2007) Detoxification of wastewater containing five common pesticides by solar AOPs–biological coupled system. Catal Today 129:69–78. https://doi.org/10.1016/J.CATTOD.2007.06.055

    Article  CAS  Google Scholar 

  7. Risica S, Grande S, Fisica L (2000) ISTITUTO SUPERIORE DI SANITÀ council directive 98 / 83 / EC on the quality of water intended for human consumption : calculation of derived activity concentrations Rapporti ISTISAN. 1–49

  8. Charlton AJA, Jones A (2007) Determination of imidazole and triazole fungicide residues in honeybees using gas chromatography–mass spectrometry. J Chromatogr A 1141:117–122. https://doi.org/10.1016/J.CHROMA.2006.11.107

    Article  CAS  PubMed  Google Scholar 

  9. Jeannot R, Sabik H, Sauvard E, Genin E (2000) Application of liquid chromatography with mass spectrometry combined with photodiode array detection and tandem mass spectrometry for monitoring pesticides in surface waters. J Chromatogr A 879:51–71. https://doi.org/10.1016/S0021-9673(00)00098-4

    Article  CAS  PubMed  Google Scholar 

  10. Su H, Lin Y, Wang Z et al (2016) Magnetic metal–organic framework–titanium dioxide nanocomposite as adsorbent in the magnetic solid-phase extraction of fungicides from environmental water samples. J Chromatogr A 1466:21–28. https://doi.org/10.1016/J.CHROMA.2016.08.066

    Article  CAS  PubMed  Google Scholar 

  11. Miao Q, Wang J, Nie J et al (2016) Magnetic dispersive solid-phase extraction based on a novel adsorbent for the detection of triazole pesticide residues in honey by HPLC-MS/MS. Anal Methods 8:5296–5303. https://doi.org/10.1039/C6AY00376A

    Article  CAS  Google Scholar 

  12. Almeida C, Nogueira JMF (2012) Comparison of the selectivity of different sorbent phases for bar adsorptive microextraction—application to trace level analysis of fungicides in real matrices. J Chromatogr A 1265:7–16. https://doi.org/10.1016/J.CHROMA.2012.09.047

    Article  CAS  PubMed  Google Scholar 

  13. Abolghasemi MM, Habibiyan R, Jaymand M, Piryaei M (2018) A star-shaped polythiophene dendrimer coating for solid-phase microextraction of triazole agrochemicals. Microchim Acta 185:179. https://doi.org/10.1007/s00604-017-2639-8

    Article  CAS  Google Scholar 

  14. Vieira AC, Santos MG, Figueiredo EC (2017) Solid-phase extraction of triazole fungicides from water samples using disks impregnated with carbon nanotubes followed by GC-MS analysis. Int J Environ Anal Chem 97:29–41. https://doi.org/10.1080/03067319.2016.1272679

    Article  CAS  Google Scholar 

  15. Farajzadeh MA, Sorouraddin SM, Mogaddam MRA (2014) Liquid phase microextraction of pesticides: a review on current methods. Microchim Acta 181:829–851. https://doi.org/10.1007/s00604-013-1157-6

    Article  CAS  Google Scholar 

  16. Nie J, Chen F, Song Z et al (2016) Large volume of water samples introduced in dispersive liquid–liquid microextraction for the determination of 15 triazole fungicides by gas chromatography-tandem mass spectrometry. Anal Bioanal Chem 408:7461–7471. https://doi.org/10.1007/s00216-016-9835-y

    Article  CAS  PubMed  Google Scholar 

  17. Tang T, Qian K, Shi T et al (2010) Determination of triazole fungicides in environmental water samples by high performance liquid chromatography with cloud point extraction using polyethylene glycol 600 monooleate. Anal Chim Acta 680:26–31. https://doi.org/10.1016/J.ACA.2010.09.034

    Article  CAS  PubMed  Google Scholar 

  18. Kakavandi MG, Behbahani M, Omidi F, Hesam G (2017) Application of ultrasonic assisted-dispersive solid phase extraction based on ion-imprinted polymer nanoparticles for Preconcentration and trace determination of Lead ions in food and water samples. Food Anal Methods 10:2454–2466. https://doi.org/10.1007/s12161-016-0788-8

    Article  Google Scholar 

  19. Zhao J, Lai S, Ruan L, Cheng J (2013) Structure , bioactivity and implications for environmental remediation of complexes comprising the fungicide hexaconazole bound to copper. https://doi.org/10.1002/ps.3536

  20. Qiu R, Luo H (2015) Copper(I)–triazole dimer formation and rate acceleration in in-source click reaction. RSC Adv 5:96213–96221. https://doi.org/10.1039/C5RA19855K

    Article  CAS  Google Scholar 

  21. Sorribes-Soriano A, de la Guardia M, Esteve-Turrillas FA, Armenta S (2018) Trace analysis by ion mobility spectrometry: from conventional to smart sample preconcentration methods. A review. Anal Chim Acta 1026:37–50. https://doi.org/10.1016/J.ACA.2018.03.059

    Article  CAS  PubMed  Google Scholar 

  22. Aladaghlo Z, Fakhari AR, Hasheminasab KS (2016) Application of electromembrane extraction followed by corona discharge ion mobility spectrometry analysis as a fast and sensitive technique for determination of tricyclic antidepressants in urine samples. Microchem J 129:41–48. https://doi.org/10.1016/J.MICROC.2016.05.013

    Article  CAS  Google Scholar 

  23. Mirmahdieh S, Khayamian T, Saraji M (2012) Analysis of dextromethorphan and pseudoephedrine in human plasma and urine samples using hollow fiber-based liquid–liquid–liquid microextraction and corona discharge ion mobility spectrometry. Microchim Acta 176:471–478. https://doi.org/10.1007/s00604-011-0743-8

    Article  CAS  Google Scholar 

  24. Mohammadnejad M, Gudarzi Z, Geranmayeh S, Mahdavi V (2018) HKUST-1 metal-organic framework for dispersive solid phase extraction of 2-methyl-4-chlorophenoxyacetic acid (MCPA) prior to its determination by ion mobility spectrometry. Microchim Acta 185:495. https://doi.org/10.1007/s00604-018-3014-0

    Article  CAS  Google Scholar 

  25. Jafari MT, Rezaei B, Zaker B (2009) Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples. Anal Chem 81:3585–3591. https://doi.org/10.1021/ac802557t

    Article  CAS  PubMed  Google Scholar 

  26. Dabiri M, Alavioon SI, Movahed SK (2018) N-Heterocyclic carbene–copper complex supported on ionic liquid-modified graphene oxide: versatile catalyst for synthesis of (i) 1,2,3-triazole and (ii) propargylamine derivatives. J Iran Chem Soc 15:2463–2474. https://doi.org/10.1007/s13738-018-1435-7

  27. Wei Q, Song Z, Nie J et al (2016) Tablet-effervescence-assisted dissolved carbon flotation for the extraction of four triazole fungicides in water by gas chromatography with mass spectrometry. J Sep Sci 39:4603–4609. https://doi.org/10.1002/jssc.201600619

    Article  CAS  PubMed  Google Scholar 

  28. Farajzadeh MA, Djozan D, Mogaddam MRA, Bamorowat M (2011) Extraction and preconcentration technique for triazole pesticides from cow milk using dispersive liquid-liquid microextraction followed by GC-FID and GC-MS determinations. J Sep Sci 34:1309–1316. https://doi.org/10.1002/jssc.201000928

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Yang X, Hu L et al (2016) Detection of triazole pesticides in environmental water and juice samples using dispersive liquid–liquid microextraction with solidified sedimentary ionic liquids. New J Chem 40:4696–4704. https://doi.org/10.1039/C5NJ03376D

    Article  CAS  Google Scholar 

  30. Bolaños PP, Romero-González R, Frenich AG, Vidal JLM (2008) Application of hollow fibre liquid phase microextraction for the multiresidue determination of pesticides in alcoholic beverages by ultra-high pressure liquid chromatography coupled to tandem mass spectrometry. J Chromatogr A 1208:16–24. https://doi.org/10.1016/J.CHROMA.2008.08.059

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support from the Research Affairs of Shahid Beheshti University is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Fakhari.

Ethics declarations

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 12788 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aladaghlo, Z., Fakhari, A.R., Alavioon, S.I. et al. Ultrasound assisted dispersive solid phase extraction of triazole fungicides by using an N-heterocyclic carbene copper complex supported on ionic liquid-modified graphene oxide as a sorbent. Microchim Acta 186, 209 (2019). https://doi.org/10.1007/s00604-019-3276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-019-3276-1

Keywords

Navigation