Skip to main content

Advertisement

Log in

Pyridoxal 5′-phosphate assay based on lucigenin chemiluminescence

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the first chemiluminescence (CL) based method for determination of pyridoxal 5′-phosphate (PLP). PLP is found to generate intense CL with lucigenin higher than that of the conventional lucigenin-H2O2 system by a factor of about 9.0. This new finding is used to be in a detection method for PLP via flow injection analysis (FIA). Response is linear in the 50 nM to 200 μM PLP concentration range with a correlation coefficient of 0.998, and the detection limit (at an S/N of 3) is 6.9 nM. The assay is highly selective over various amino acids, vitamins, sugars, coenzymes and metal ions cofactors. It exhibits advantages over the commonly employed HPLC methods in that it is rapid, more economic, eco-friendly and high throughput FIA detection of PLP without the need for toxic derivatization reagents, organic solvents, and HPLC instrumentation. The method was successfully applied to the determination of PLP in (spiked) human blood samples with recoveries in the range from 96.2–101.6% with % RSD < 4.0. The new system is also employed to determine lucigenin in the linear range of 0.3 to 100.0 μM with a correlation coefficient of 0.994 and the limit of detection is 0.04 μM.

Schematic of the chemiluminescent assay for pyridoxal 5′-phosphate (PLP). Lucigenin−PLP demonstrates 9-fold stronger chemiluminescence intensity than the lucigenin−H2O2 system. The detection limit of PLP is 6.9 nM. The method can detect PLP in human serum with good recoveries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hou C, Zhao L, Geng F, Wang D, Guo L-H (2016) Donor/acceptor nanoparticle pair-based singlet oxygen channeling homogenous chemiluminescence immunoassay for quantitative determination of bisphenol A. Anal Bioanal Chem 408(30):8795–8804. https://doi.org/10.1007/s00216-016-9584-y

    Article  CAS  PubMed  Google Scholar 

  2. Qi Y, Xiu F-R, Zheng M, Li B (2016) A simple and rapid chemiluminescence aptasensor for acetamiprid in contaminated samples: sensitivity, selectivity and mechanism. Biosens Bioelectron 83:243–249. https://doi.org/10.1016/j.bios.2016.04.074

    Article  CAS  PubMed  Google Scholar 

  3. Liu J-B, Yang C, Ko C-N, Vellaisamy K, Yang B, Lee M-Y, Leung C-H, Ma D-L (2017) A long lifetime iridium(III) complex as a sensitive luminescent probe for bisulfite detection in living zebrafish. Sensors Actuators B Chem 243:971–976. https://doi.org/10.1016/j.snb.2016.12.083

    Article  CAS  Google Scholar 

  4. Liu L-J, Wang W, Huang S-Y, Hong Y, Li G, Lin S, Tian J, Cai Z, Wang H-MD, Ma D-L, Leung C-H (2017) Inhibition of the Ras/Raf interaction and repression of renal cancer xenografts in vivo by an enantiomeric iridium(III) metal-based compound. Chem Sci 8(7):4756–4763. https://doi.org/10.1039/c7sc00311k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang W, Vellaisamy K, Li G, Wu C, Ko C-N, Leung C-H, Ma D-L (2017) Development of a long-lived luminescence probe for visualizing β-galactosidase in ovarian carcinoma cells. Anal Chem 89(21):11679–11684. https://doi.org/10.1021/acs.analchem.7b03114

    Article  CAS  PubMed  Google Scholar 

  6. Hori Y, Otomura N, Nishida A, Nishiura M, Umeno M, Suetake I, Kikuchi K (2018) Synthetic-molecule/protein hybrid probe with Fluorogenic switch for live-cell imaging of DNA methylation. J Am Chem Soc 140(5):1686–1690. https://doi.org/10.1021/jacs.7b09713

    Article  CAS  PubMed  Google Scholar 

  7. Gleu K, Petsch W (1935) Die chemiluminescenz der dimethyl-diacridyliumsalze. Angew Chem 48:57–59

    Article  CAS  Google Scholar 

  8. Saqib M, Lou B, Halawa MI, Kitte SA, Liu Z, Xu G (2016) Chemiluminescence of lucigenin-allantoin and its application for the detection of allantoin. Anal Chem. https://doi.org/10.1021/acs.analchem.6b04271

  9. He Y, Cui H (2013) Label free and homogeneous histone sensing based on chemiluminescence resonance energy transfer between lucigenin and gold nanoparticles. Biosens Bioelectron 47:313–317. https://doi.org/10.1016/j.bios.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  10. He Y, Cui H (2012) Synthesis of dendritic platinum nanoparticles/lucigenin/reduced graphene oxide hybrid with Chemiluminescence activity. Chem Eur J 18(16):4823–4826. https://doi.org/10.1002/chem.201104044

    Article  CAS  PubMed  Google Scholar 

  11. di Salvo ML, Budisa N, Contestabile R (2013) PLP-dependent enzymes: a powerful tool for metabolic synthesis of non-canonical amino acids. In: Beilstein Bozen symposium on molecular engineering and control. Beilstein Institute, Prien, pp 27–66

  12. Combs GF Jr (2008) The vitamins: fundamental aspects in nutrition and health, third edition. Am J Clin Nutr 3:313–330

    Google Scholar 

  13. Galluzzi L, Vacchelli E, Michels J, Garcia P, Kepp O, Senovilla L, Vitale I, Kroemer G (2013) Effects of vitamin B6 metabolism on oncogenesis, tumor progression and therapeutic responses. Oncogene 32(42):4995–5004

    Article  CAS  PubMed  Google Scholar 

  14. Lehmann M, Regland B, rn o BK, Gottfries C (2003) Vitamin B12-B6-folate treatment improves blood-brain barrier function in patients with hyperhomocysteinaemia and mild cognitive impairment. Dement Geriatr Cogn Disord 16(3):145–150

    Article  CAS  PubMed  Google Scholar 

  15. Whyte MP, Mahuren JD, Vrabel LA, Coburn S (1985) Markedly increased circulating pyridoxal-5′-phosphate levels in hypophosphatasia. Alkaline phosphatase acts in vitamin B6 metabolism. J Clin Investig 76(2):752

    Article  CAS  PubMed  Google Scholar 

  16. Baumgartner-Sigl S, Haberlandt E, Mumm S, Scholl-Bürgi S, Sergi C, Ryan L, Ericson KL, Whyte MP, Högler W (2007) Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c. 677T> C, p. M226T; c. 1112C> T, p. T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone 40(6):1655–1661

    Article  CAS  PubMed  Google Scholar 

  17. Bates CJ, Pentieva KD, Matthews N, Macdonald A (1999) A simple, sensitive and reproducible assay for pyridoxal 5′-phosphate and 4-pyridoxic acid in human plasma. Clin Chim Acta 280(1):101–111

    Article  CAS  PubMed  Google Scholar 

  18. Ericson KL, Mahuren JD, Zubovic YM, Coburn SP (2005) Use of chlorite to improve HPLC detection of pyridoxal 5′-phosphate. J Chromatogr B 823(2):218–220

    Article  CAS  Google Scholar 

  19. Bisp MR, Bor MV, Heinsvig E-M, Kall MA, Nexø E (2002) Determination of vitamin B6 vitamers and pyridoxic acid in plasma: development and evaluation of a high-performance liquid chromatographic assay. Anal Biochem 305(1):82–89

    Article  CAS  PubMed  Google Scholar 

  20. Tsuge H (1997) [1] Determination of vitamin B 6 vitamers and metabolites in a bioloical sample. Methods Enzymol 280:3–12

    Article  CAS  PubMed  Google Scholar 

  21. Talwar D, Quasim T, McMillan DC, Kinsella J, Williamson C, O’Reilly DSJ (2003) Optimisation and validation of a sensitive high-performance liquid chromatography assay for routine measurement of pyridoxal 5-phosphate in human plasma and red cells using pre-column semicarbazide derivatisation. J Chromatogr B 792(2):333–343

    Article  CAS  Google Scholar 

  22. Chen L, Ou J, Wang H, Liu Z, Ye M, Zou H (2016) Tailor-made stable Zr(IV)-based metal-organic frameworks for laser desorption/ionization mass spectrometry analysis of small molecules and simultaneous enrichment of Phosphopeptides. ACS Appl Mater Interfaces 8(31):20292–20300. https://doi.org/10.1021/acsami.6b06225

    Article  CAS  PubMed  Google Scholar 

  23. Kokado A, Arakawa H, Maeda M (2002) Chemiluminescent assay of alkaline phosphatase using dihydroxyacetone phosphate as substrate detected with lucigenin. Luminescence 17(1):5–10. https://doi.org/10.1002/bio.669

    Article  CAS  PubMed  Google Scholar 

  24. Kokado A, Tsuji A, Maeda M (1997) Chemiluminescence assay of alkaline phosphatase using cortisol-21 -phosphate as substrate and its application to enzyme immunoassays. Anal Chim Acta 337(3):335–340. https://doi.org/10.1016/S0003-2670(96)00400-X

    Article  CAS  Google Scholar 

  25. Bromme HJ, Ebelt H, Peschke D, Peschke E (1999) Alloxan acts as a prooxidant only under reducing conditions: influence of melatonin. Cell Mol Life Sci 55(3):487–493. https://doi.org/10.1007/s000180050305

    Article  CAS  PubMed  Google Scholar 

  26. Maskiewicz R, Sogah D, Bruice TC (1979) Chemiluminescent reactions of lucigenin .2. reactions of lucigenin with hydroxide ion and other nucleophiles. J Am Chem Soc 101(18):5355–5364. https://doi.org/10.1021/ja00512a041

    Article  CAS  Google Scholar 

  27. Puts J, de Groot M, Haex M, Jakobs B (2015) Simultaneous determination of underivatized vitamin B1 and B6 in whole blood by reversed phase ultra high performance liquid chromatography tandem mass spectrometry. PLoS One 10(7):e0132018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gonzalez-Rodriguez J, Sevilla JM, Pineda T, Blazquez M (2012) Electrochemical analysis on compounds of the vitamin B6 family using glassy carbon electrodes. Int J Electrochem Sci 7(3):2221–2229

    CAS  Google Scholar 

  29. Halawa MI, Gao W, Saqib M, Kitte SA, Wu F, Xu G (2017) Sensitive detection of alkaline phosphatase by switching on gold nanoclusters fluorescence quenched by pyridoxal phosphate. Biosens Bioelectron 95:8–14. https://doi.org/10.1016/j.bios.2017.03.073

    Article  CAS  PubMed  Google Scholar 

  30. Edwards P, Liu PKS, Rose GA (1989) Determination of plasma pyridoxal-phosphate levels using a modified Apotryptophanase assay. Ann Clin Biochem 26(2):158–163. https://doi.org/10.1177/000456328902600212

    Article  CAS  PubMed  Google Scholar 

  31. Meadows GG, Boze L, Elmer GW (1977) New rapid-determination of pyridoxal-phosphate using tyrosine phenol-Lyase. J Pharm Sci 66(10):1503–1505. https://doi.org/10.1002/jps.2600661046

    Article  CAS  PubMed  Google Scholar 

  32. Soda K, Yorifuji T, Misono H, Moriguchi M (1969) Spectrophotometric determination of pyridoxal and pyridoxal 5′-phosphate with 3-methyl-2-benzothiazolone hydrazone hydrochloride, and their selective assay. Biochem J 114(3):629–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Loo YH, Badger L (1969) Spectrofluorimetric assay of vitamin B6 analogues in brain tissue. J Neurochem 16(5):801–804. https://doi.org/10.1111/j.1471-4159.1969.tb06460.x

    Article  CAS  PubMed  Google Scholar 

  34. Veazey RL, Nieman TA (1979) Chemiluminescent determination of clinically important organic reductants. Anal Chem 51(13):2092–2096. https://doi.org/10.1021/ac50049a009

    Article  CAS  Google Scholar 

  35. Cantatore V, Pandit S, Mokkapati VRSS, Schindler S, Eigler S, Mijakovic I, Panas I (2018) Design strategy of a graphene based bio-sensor for glucose. Carbon 137:343–348. https://doi.org/10.1016/j.carbon.2018.05.044

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the kind support from the National Natural Science Foundation of China (Nos. 21675148 and 21505128), the Ministry of Science and Technology of the People’s Re-public of China (No. 2016YFA0201300), and the Chinese Academy of Sciences (CAS)–the Academy of Sciences for the Developing World (TWAS) President’s Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Guobao Xu.

Ethics declarations

The authors declare no competing financial interests.

Electronic supplementary material

ESM 1

(DOCX 2.15 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halawa, M.I., Saqib, M., Gao, W. et al. Pyridoxal 5′-phosphate assay based on lucigenin chemiluminescence. Microchim Acta 185, 381 (2018). https://doi.org/10.1007/s00604-018-2887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2887-2

Keywords

Navigation