Skip to main content
Log in

Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A disposable needle-type of hybrid electrode was prepared from a core of stainless steel needle whose surface was modified with a 3D nanoporous gold/NiCo2O4 nanowall hybrid structure for electrochemical non-enzymatic glucose detection. This hybrid electrode, best operated at 0.45 V (vs. SCE) in solutions of pH 13 has a linear response in the 0.01 to 21 mM glucose concentration range, a response time of <1 s, and a 1 μM detection limit (at an S/N ratio of 3). The remarkable enhancement compared to the solid gold/NiCo2O4 and stainless steel/NiCo2O4 hybrid electrodes in electrochemical performance is assumed to originate from the good electrical conductivity and large surface area of the hybrid electrode, which enhance the transport of mass and charge during electrochemical reactions. This biosensor was also applied to real sample analysis with little interferences. The electrode is disposable and considered to be a promising tool for non-enzymatic sensing of glucose in a variety of practical situations.

Ultrathin NiCo2O4 nanowalls supported on nanoporous gold that is coated on a stainless steel needle was fabricated for sensitive non-enzymatic amperometric sensing of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1|
Fig. 1: Characterization of nanoporous gold needle
Fig. 2: Morphological characterization
Fig. 3: Electrochemical characterization
Fig. 4: Amperometric glucose detection

Similar content being viewed by others

References

  1. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  2. Yang J, Cho M, Lee Y (2016) Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosens Bioelectron 75:15–22

    Article  CAS  Google Scholar 

  3. Zheng M, Li L, Gu P, Lin Z, Xue H, Pang H (2017) A glassy carbon electrode modified with ordered nanoporous Co3O4 for non-enzymatic sensing of glucose. Microchim Acta 184:943–949

    Article  CAS  Google Scholar 

  4. Wang Q, Cui X, Chen J, Zheng X, Liu C, Xue T, Wang H, Jin Z, Qiao L, Zheng W (2012) Well-dispersed palladium nanoparticles on graphene oxide as a non-enzymatic glucose sensor. RSC Adv 2:6245–6249

    Article  CAS  Google Scholar 

  5. Dhara K, Thiagarajan R, Nair BG, Thekkedath GSB (2015) Highly sensitive and wide-range non-enzymatic disposable glucose sensor based on a screen printed carbon electrode modified with reduced graphene oxide and Pd-CuO nanoparticles. Microchim Acta 182:2183–2192

    Article  CAS  Google Scholar 

  6. Juſík T, Podešva P, Farka Z, Kováſ D, Skládal P, Foret F (2016) Nanostructured gold deposited in gelatin template applied for electrochemical assay of glucose in serum. Electrochim Acta 188:277–285

    Article  Google Scholar 

  7. Zhang H, Liu S (2017) Nanoparticles-assembled NiO nanosheets templated by graphene oxide film for highly sensitive non-enzymatic glucose sensing. Sensors Actuators B Chem 238:788–794

    Article  CAS  Google Scholar 

  8. Zhao C, Wu X, Li P, Zhao C, Qian X (2017) Hydrothermal deposition of CuO/rGO/Cu2O nanocomposite on copper foil for sensitive nonenzymatic voltammetric determination of glucose and hydrogen peroxide. Microchim Acta 184:2341–2348

    Article  CAS  Google Scholar 

  9. Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y, Ou E, Xu W (2017) 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection. Small 13:1602077–1602084

    Article  Google Scholar 

  10. Gao Z, Zhang L, Ma C, Zhou Q, Tang Y, Tu Z, Yang W, Cui L, Li Y (2016) TiO2 decorated Co3O4 acicular nanotube arrays and its application as a non-enzymatic glucose sensor. Biosens Bioelectron 80:511–518

    Article  CAS  Google Scholar 

  11. Huo H, Zhao Y, Xu C (2014) 3D Ni3S2 nanosheet arrays supported on Ni foam for high-performance supercapacitor and non-enzymatic glucose detection. J Mater Chem A 2:15111–15117

    Article  CAS  Google Scholar 

  12. Gao Z, Lin Y, He Y, Tang D (2017) Enzyme-free amperometric glucose sensor using a glassy carbon electrode modified with poly(vinyl butyral) incorporating a hybrid nanostructure composed of molybdenum disulfide and copper sulfide. Microchim Acta 184:807–814

    Article  CAS  Google Scholar 

  13. Kim S, Lee SH, Cho M, Lee Y (2016) Solvent-assisted morphology confinement of a nickel sulfide nanostructure and its application for non-enzymatic glucose sensor. Biosens Bioelectron 85:587–595

    Article  CAS  Google Scholar 

  14. Martín-Yerga D, Carrasco-Rodríguez J, Fierro JLG, García Alonso FJ, Costa-García A (2017) Copper-modified titanium phosphate nanoparticles as electrocatalyst for glucose detection. Electrochim Acta 229:102–111

    Article  Google Scholar 

  15. Sun Q, Wang M, Bao S, Wang Y, Gu S (2016) Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection. Analyst 141:256–260

    Article  CAS  Google Scholar 

  16. Wang Z, Cao X, Liu D, Hao S, Du G, Asiri AM, Sun X (2016) Ternary NiCoP nanosheet array on a Ti mesh: a high-performance electrochemical sensor for glucose detection. Chem Commun 52:14438–14441

    Article  CAS  Google Scholar 

  17. Li S, Hou L, Yuan B, Chang M, Ma Y, Du J (2016) Enzyme-free glucose sensor using a glassy carbon electrode modified with reduced graphene oxide decorated with mixed copper and cobalt oxides. Microchim Acta 183:1813–1821

    Article  CAS  Google Scholar 

  18. Yu Z, Li H, Zhang X, Liu N, Tan W, Zhang X, Zhang L (2016) Facile synthesis of NiCo2O4@polyaniline core-shell nanocomposite for sensitive determination of glucose. Biosens Bioelectron 75:161–165

    Article  CAS  Google Scholar 

  19. Yuan C, Li J, Hou L, Zhang X, Shen L, Lou XWD (2012) Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. Adv Funct Mater 22:4592–4597

    Article  CAS  Google Scholar 

  20. Lang X, Fu H, Hou C, Han G, Yang P, Liu Y, Jiang Q (2013) Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat Commun 4:2169

    Google Scholar 

  21. Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF (2016) Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy 1:16053

    Article  CAS  Google Scholar 

  22. Zhou M, Guo S (2015) Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors. ChemCatChem 7:2744–2764

    Article  CAS  Google Scholar 

  23. Duan J, Chen S, Zhao C (2017) Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 8:15341

    Article  CAS  Google Scholar 

  24. Guo M, Yin X, Zhou C, Xia Y, Huang W, Li Z (2014) Ultrasensitive non-enzymatic sensing of glucose on Ni(OH)2-coated nanoporous gold film with two pairs of electron mediators. Electrochim Acta 142:351–358

    Article  CAS  Google Scholar 

  25. Wu C, Sun H, Li Y, Liu X, Du X, Wang X, Xu P (2015) Biosensor based on glucose oxidase-nanoporous gold co-catalysis for glucose detection. Biosens Bioelectron 66:350–355

    Article  CAS  Google Scholar 

  26. Jia F, Yu C, Ai Z, Zhang L (2007) Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity. Chem Mater 19:3648–3653

    Article  CAS  Google Scholar 

  27. Dong X, Xu H, Wang X, Huang Y, Chan-Park MB, Zhang H, Wang L, Huang W, Chen P (2012) 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 6:3206–3213

    Article  CAS  Google Scholar 

  28. Ci S, Huang T, Wen Z, Cui S, Mao S, Steeber DA, Chen J (2014) Nickel oxide hollow microsphere for non-enzyme glucose detection. Biosens Bioelectron 54:251–257

    Article  CAS  Google Scholar 

  29. Wu M, Meng S, Wang Q, Si W, Huang W, Dong X (2015) Nickel-cobalt oxide decorated three-dimensional graphene as an enzyme mimic for glucose and calcium detection. ACS Appl Mater Interfaces 7:21089–21094

    Article  CAS  Google Scholar 

  30. Ramachandran K (2016) Ni-Co bimetal nanowires filled multiwalled carbon nanotubes for the highly sensitive and selective non-enzymatic glucose sensor applications. Sci Rep 6:36583

    Article  CAS  Google Scholar 

  31. Zhan B, Liu C, Chen H, Shi H, Wang L, Chen P, Huang W, Dong X (2014) Free-standing electrochemical electrode based on Ni(OH)2/3D graphene foam for nonenzymatic glucose detection. Nano 6:7424–7429

    CAS  Google Scholar 

  32. Qian L, Gu L, Yang L, Yuan H, Xiao D (2013) Direct growth of NiCo2O4 nanostructures on conductive substrates with enhanced electrocatalytic activity and stability for methanol oxidation. Nano 5:7388–7396

    CAS  Google Scholar 

  33. Xu X, Song F, Hu X (2016) A nickel iron diselenide-derived efficient oxygen-evolution catalyst. Nat Commun 7:12324

    Article  CAS  Google Scholar 

  34. Lei F, Liu W, Sun Y, Xu J, Liu K, Liang L, Yao T, Pan B, Wei S, Xie Y (2016) Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat Commun 7:12697

    Article  CAS  Google Scholar 

  35. Xue B, Li K, Feng L, Lu J, Zhang L (2017) Graphene wrapped porous Co3O4/NiCo2O4 double-shelled nanocages with enhanced electrocatalytic performance for glucose sensor. Electrochim Acta 239:36–44

    Article  CAS  Google Scholar 

  36. Ji S, Yang Z, Zhang C, Miao Y, Tjiu WW, Pan J, Liu T (2013) Nonenzymatic sensor for glucose based on a glassy carbon electrode modified with Ni(OH)2 nanoparticles grown on a film of molybdenum sulfide. Microchim Acta 180:1127–1134

    Article  CAS  Google Scholar 

  37. Wang L, Lu X, Ye Y, Sun L, Song Y (2013) Nickel-cobalt nanostructures coated reduced graphene oxide nanocomposite electrode for nonenzymatic glucose biosensing. Electrochim Acta 114:484–493

    Article  CAS  Google Scholar 

  38. Zhang C, Ni H, Chen R, Zhan W, Zhang B, Lei R, Xiao T, Zha Y (2015) Enzyme-free glucose sensing based on Fe3O4 nanorod arrays. Microchim Acta 182:1811–1818

    Article  CAS  Google Scholar 

  39. Xie F, Liu T, Xie L, Sun X, Luo Y (2018) Metallic nickel nitride nanosheet: an efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing. Sensors Actuators B Chem 255:2794–2799

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFA0200400), the Natural Science Foundation of China (51571100, 21275064, 51602305), the Fundamental Research Funds for the Central Universities, and the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiang Cui.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 22124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Qi, H., Wang, B. et al. Ultrathin NiCo2O4 nanowalls supported on a 3D nanoporous gold coated needle for non-enzymatic amperometric sensing of glucose. Microchim Acta 185, 124 (2018). https://doi.org/10.1007/s00604-017-2663-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-017-2663-8

Keywords

Navigation