Skip to main content
Log in

Recent advances in electrochemical and electrochemiluminescence based determination of the activity of caspase-3

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Caspases, especially caspase-3, play a critical role in the intrinsic and extrinsic pathways of apoptosis. In addition, caspase-3 is involved in mental disorders like Alzheimer disease. Any up and down regulation of caspase-3 activity may cause cancer. This review (with 58 references) summarizes recent advances in electrochemical and electrochemiluminescent quantitation of the activity of caspase-3 based on the use of nanomaterials. The nanomaterials and nanolabels are classified in three main subgroups, namely electrochemical signal amplification strategies, amplification based on modified electrodes, and the combination of both modes. The potential of various electrochemical and electrochemiluminescence bioassays is discussed, and methods to circumvent certain limitations are oresented. Finally, current trends in the detection of caspase-3 such as system integration and the application of advanced nanomaterials are discussed.

The review summarizes electrochemical methods for the quantitation of caspase-3 activity based on the use of nanomaterials and of nanomaterial based labels. It contains subsections on electrochemical signal amplification strategies, amplification based on modified electrodes, and the combination of both modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Czerski L, Nuñez G (2004) Apoptosome formation and caspase activation: is it different in the heart? J Mol Cell Cardiol 37(3):643–652

    Article  CAS  Google Scholar 

  2. Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J Human ICE/CED-3 protease nomenclature. Cell 87(2):171. https://doi.org/10.1016/S0092-8674(00)81334-3

  3. Han BH, Xu D, Choi J, Han Y, Xanthoudakis S, Roy S, Tam J, Vaillancourt J, Colucci J, Siman R, Giroux A, Robertson GS, Zamboni R, Nicholson DW, Holtzman DM (2002) Selective, reversible caspase-3 inhibitor is neuroprotective and reveals distinct pathways of cell death after neonatal hypoxic-ischemic brain injury. J Biol Chem 277(33):30128–30136. https://doi.org/10.1074/jbc.M202931200

    Article  CAS  Google Scholar 

  4. P-k H, Hawkins CJ (2005) Mammalian initiator apoptotic caspases. FEBS J 272(21):5436–5453. https://doi.org/10.1111/j.1742-4658.2005.04966.x

    Article  Google Scholar 

  5. Hunter A, LaCasse E, Korneluk R (2007) The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12(9):1543–1568. https://doi.org/10.1007/s10495-007-0087-3

    Article  CAS  Google Scholar 

  6. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316. https://doi.org/10.1126/science.281.5381.1312

    Article  CAS  Google Scholar 

  7. Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15(6):725–731

    Article  CAS  Google Scholar 

  8. Christofferson DE, Yuan J (2010) Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol 22(2):263–268

    Article  CAS  Google Scholar 

  9. Ivanov VN, Bhoumik A, Ze R (2003) Death receptors and melanoma resistance to apoptosis. Oncogene 22(20):3152–3161

    Article  CAS  Google Scholar 

  10. Yuan J, Kroemer G (2010) Alternative cell death mechanisms in development and beyond. Genes Dev 24(23):2592–2602. https://doi.org/10.1101/gad.1984410

    Article  CAS  Google Scholar 

  11. Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis - the p53 network. J Cell Sci 116(20):4077–4085. https://doi.org/10.1242/jcs.00739

    Article  CAS  Google Scholar 

  12. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407(6805):770–776

    Article  CAS  Google Scholar 

  13. Itoh K, Hase H, Kojima H, Saotome K, Nishioka K, Kobata T (2004) Central role of mitochondria and p53 in Fas-mediated apoptosis of rheumatoid synovial fibroblasts. Rheumatology 43(3):277–285. https://doi.org/10.1093/rheumatology/keh039

    Article  CAS  Google Scholar 

  14. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147(7):1640. https://doi.org/10.1016/j.cell.2011.11.045

    Article  CAS  Google Scholar 

  15. Lamkanfi M, Festjens N, Declercq W, Berghe TV, Vandenabeele P (2006) Caspases in cell survival, proliferation and differentiation. Cell Death Differ 14(1):44–55

    Article  Google Scholar 

  16. D'Amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17(7):1104–1114

    Article  Google Scholar 

  17. Lin S-Y, Chen N-T, Sun S-P, Chang JC, Wang Y-C, Yang C-S, Lo L-W (2010) The protease-mediated nucleus shuttles of subnanometer gold quantum dots for real-time monitoring of apoptotic cell death. J Am Chem Soc 132(24):8309–8315. https://doi.org/10.1021/ja100561k

    Article  CAS  Google Scholar 

  18. Karim-Nezhad G, Hasanzadeh M, Saghatforoush L, Shadjou N, Khalilzadeh B, Ershad S (2009) Electro-oxidation of ascorbic acid catalyzed on cobalt hydroxide-modified glassy carbon electrode. J Serb Chem Soc 74(5):581–593

    Article  CAS  Google Scholar 

  19. Saghatforoush L, Hasanzadeh M, Karim-Nezhad G, Ershad S, Shadjou N, Khalilzadeh B, Hajjizadeh M (2009) Kinetic study of the electrooxidation of mefenamic acid and indomethacin catalysed on cobalt hydroxide modified glassy carbon electrode. Bull Kor Chem Soc 30(6):1341–1348

    Article  CAS  Google Scholar 

  20. Ziegler U, Groscurth P (2004) Morphological features of cell death. Physiology 19(3):124–128. https://doi.org/10.1152/nips.01519.2004

    Article  CAS  Google Scholar 

  21. Martinez MM, Reif RD, Pappas D (2010) Detection of apoptosis: a review of conventional and novel techniques. Anal Methods 2(8):996–1004. https://doi.org/10.1039/C0AY00247J

    Article  CAS  Google Scholar 

  22. Yin J, Miao P (2015) Apoptosis evaluation by electrochemical techniques. Chem Asian J 11(5):632–641. https://doi.org/10.1002/asia.201501045

  23. Maysinger D, Hutter E (2015) Nanoparticle-based caspase sensors. Nanomedicine 10(3):483–501. https://doi.org/10.2217/nnm.14.158

    Article  CAS  Google Scholar 

  24. Balal K, Mohammad H, Bahareh B, Ali B, Maryam H, Mozhgan Z (2009) Zeolite nanoparticle modified carbon paste electrode as a biosensor for simultaneous determination of dopamine and tryptophan. J Chin Chem Soc 56(4):789–796. https://doi.org/10.1002/jccs.200900117

    Article  CAS  Google Scholar 

  25. Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87(1):230–249. https://doi.org/10.1021/ac5039863

    Article  CAS  Google Scholar 

  26. Swisher LZ, Syed LU, Prior AM, Madiyar FR, Carlson KR, Nguyen TA, Hua DH, Li J (2013) Electrochemical protease biosensor based on enhanced AC voltammetry using carbon nanofiber Nanoelectrode arrays. J Phys Chem C 117(8):4268–4277. https://doi.org/10.1021/jp312031u

    Article  CAS  Google Scholar 

  27. Jaymand M, Hatamzadeh M, Omidi Y (2015) Modification of polythiophene by the incorporation of processable polymeric chains: recent progress in synthesis and applications. Prog Polym Sci 47:26–69

    Article  CAS  Google Scholar 

  28. Sethuraman V, Muthuraja P, Anandha Raj J, Manisankar P (2016) A highly sensitive electrochemical biosensor for catechol using conducting polymer reduced graphene oxide–metal oxide enzyme modified electrode. Biosens Bioelectron 84:112–119

    Article  CAS  Google Scholar 

  29. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214. https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  30. Hasanzadeh M, Shadjou N, Omidinia E, Eskandani M, de la Guardia M (2013) Mesoporous silica materials for use in electrochemical immunosensing. TrAC Trends Anal Chem 45:93–106

    Article  CAS  Google Scholar 

  31. Xiao H, Liu L, Meng F, Huang J, Li G (2008) Electrochemical approach to detect apoptosis. Anal Chem 80(13):5272–5275. https://doi.org/10.1021/ac8005268

    Article  CAS  Google Scholar 

  32. Chen H, Zhang J, Gao Y, Liu S, Koh K, Zhu X, Yin Y (2015) Sensitive cell apoptosis assay based on caspase-3 activity detection with graphene oxide-assisted electrochemical signal amplification. Biosens Bioelectron 68:777–782

    Article  CAS  Google Scholar 

  33. Khalilzadeh B, Shadjou N, Eskandani M, Charoudeh HN, Omidi Y, Rashidi M-R (2015) A reliable self-assembled peptide based electrochemical biosensor for detection of caspase 3 activity and apoptosis. RSC Adv 5(72):58316–58326. https://doi.org/10.1039/C5RA08561F

    Article  CAS  Google Scholar 

  34. Takano S, Shiomoto S, Inoue KY, Ino K, Shiku H, Matsue T (2014) Electrochemical approach for the development of a simple method for detecting cell apoptosis based on caspase-3 activity. Anal Chem 86(10):4723–4728. https://doi.org/10.1021/ac403394z

    Article  CAS  Google Scholar 

  35. Khalilzadeh B, Shadjou N, Afsharan H, Eskandani M, Nozad Charoudeh H, Rashidi M-R (2016) Reduced graphene oxide decorated with gold nanoparticle as signal amplification element on ultra-sensitive electrochemiluminescence determination of caspase-3 activity and apoptosis using peptide based biosensor. Bioimpacts 6(3):135–147. 10.15171/bi.2016.20

    Article  Google Scholar 

  36. Dong Y-P, Chen G, Zhou Y, Zhu J-J (2016) Electrochemiluminescent sensing for caspase-3 activity based on Ru(bpy)32+−doped silica Nanoprobe. Anal Chem 88(3):1922–1929. https://doi.org/10.1021/acs.analchem.5b04379

    Article  CAS  Google Scholar 

  37. Bard AJ, Faulkner LR, Leddy J, Zoski CG (1980) Electrochemical methods: fundamentals and applications, vol 2. Wiley, New York

    Google Scholar 

  38. Kokkinos C, Economou A, Prodromidis MI (2016) Electrochemical immunosensors: critical survey of different architectures and transduction strategies. TrAC Trends Anal Chem 79:88–105

    Article  CAS  Google Scholar 

  39. Ding L, Bond AM, Zhai J, Zhang J (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta 797:1–12

    Article  CAS  Google Scholar 

  40. Justino CIL, Rocha-Santos TAP, Duarte AC, Rocha-Santos TAP (2013) Advances in point-of-care technologies with biosensors based on carbon nanotubes. TrAC Trends Anal Chem 45:24–36

    Article  CAS  Google Scholar 

  41. Zhang J-J, Zheng T-T, Cheng F-F, Zhu J-J (2011) Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels. Chem Commun 47(4):1178–1180. https://doi.org/10.1039/C0CC03494K

    Article  CAS  Google Scholar 

  42. Miao P, Yin J, Ning L, Li X (2014) Peptide-based electrochemical approach for apoptosis evaluation. Biosens Bioelectron 62(0):97–101

    Article  CAS  Google Scholar 

  43. Kumar SA, Chen S-M (2007) Myoglobin/arylhydroxylamine film modified electrode: direct electrochemistry and electrochemical catalysis. Talanta 72(2):831–838

    Article  CAS  Google Scholar 

  44. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22(10):1027–1036. https://doi.org/10.1002/elan.200900571

    Article  CAS  Google Scholar 

  45. Sotiropoulou S, Chaniotakis NA (2003) Carbon nanotube array-based biosensor. Anal Bioanal Chem 375(1):103–105. https://doi.org/10.1007/s00216-002-1617-z

    Article  CAS  Google Scholar 

  46. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. TrAC Trends Anal Chem 29(9):954–965

    Article  CAS  Google Scholar 

  47. Hasanzadeh M, Shadjou N, de la Guardia M, Eskandani M, Sheikhzadeh P (2012) Mesoporous silica-based materials for use in biosensors. TrAC Trends Anal Chem 33:117–129

    Article  CAS  Google Scholar 

  48. Zhou S, Zheng T, Chen Y, Zhang J, Li L, Lu F, Zhu J-J (2014) Toward therapeutic effects evaluation of chronic myeloid leukemia drug: electrochemical platform for caspase-3 activity sensing. Biosens Bioelectron 61(0):648–654

    Article  CAS  Google Scholar 

  49. Khalilzadeh B, Charoudeh HN, Shadjou N, Mohammad-Rezaei R, Omidi Y, Velaei K, Aliyari Z, Rashidi M-R (2016) Ultrasensitive caspase-3 activity detection using an electrochemical biosensor engineered by gold nanoparticle functionalized MCM-41: its application during stem cell differentiation. Sensors Actuators B Chem 231:561–575

    Article  CAS  Google Scholar 

  50. Maalouf R, Fournier-Wirth C, Coste J, Chebib H, Saïkali Y, Vittori O, Errachid A, Cloarec J-P, Martelet C, Jaffrezic-Renault N (2007) Label-free detection of bacteria by electrochemical impedance spectroscopy: comparison to surface Plasmon resonance. Anal Chem 79(13):4879–4886. https://doi.org/10.1021/ac070085n

    Article  CAS  Google Scholar 

  51. Hung VWS, Veloso AJ, Chow AM, Ganesh HVS, Seo K, Kendüzler E, Brown IR, Kerman K (2015) Electrochemical impedance spectroscopy for monitoring caspase-3 activity. Electrochim Acta 162:79–85

    Article  CAS  Google Scholar 

  52. Arndt S, Seebach J, Psathaki K, Galla H-J, Wegener J (2004) Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens Bioelectron 19(6):583–594

    Article  CAS  Google Scholar 

  53. Hasanzadeh M, Shadjou N (2016) Electrochemical nanobiosensing in whole blood: recent advances. TrAC Trends Anal Chem 80:167–176

    Article  CAS  Google Scholar 

  54. Afsharan H, Khalilzadeh B, Tajalli H, Mollabashi M, Navaeipour F, Rashidi M-R (2016) A sandwich type immunosensor for ultrasensitive electrochemical quantification of p53 protein based on gold nanoparticles/graphene oxide. Electrochim Acta 188:153–164

    Article  CAS  Google Scholar 

  55. Cai F, Zhu Q, Zhao K, Deng A, Li J (2015) Multiple signal amplified Electrochemiluminescent immunoassay for Hg2+ using graphene-coupled quantum dots and gold nanoparticles-labeled horseradish peroxidase. Environ Sci Technol 49(8):5013–5020. https://doi.org/10.1021/acs.est.5b00690

    Article  CAS  Google Scholar 

  56. Afsharan H, Navaeipour F, Khalilzadeh B, Tajalli H, Mollabashi M, Ahar MJ, Rashidi M-R (2016) Highly sensitive electrochemiluminescence detection of p53 protein using functionalized Ru–silica nanoporous@gold nanocomposite. Biosens Bioelectron 80:146–153

    Article  CAS  Google Scholar 

  57. Richter MM (2004) Electrochemiluminescence (ECL). Chem Rev 104(6):3003–3036. https://doi.org/10.1021/cr020373d

    Article  CAS  Google Scholar 

  58. Rahman MS, Kabashima T, Yasmin H, Shibata T, Kai M (2013) A novel fluorescence reaction for N-terminal Ser-containing peptides and its application to assay caspase activity. Anal Biochem 433(2):79–85

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge for the financial support of this project by Stem Cell Research Center (SCRC) at Tabriz University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Balal Khalilzadeh or Nasrin Shadjou.

Ethics declarations

The author(s) declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilzadeh, B., Shadjou, N., Charoudeh, H.N. et al. Recent advances in electrochemical and electrochemiluminescence based determination of the activity of caspase-3. Microchim Acta 184, 3651–3662 (2017). https://doi.org/10.1007/s00604-017-2466-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2466-y

Keywords

Navigation